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Abstract

Matrix-assisted laser desportion/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been
the mainstay of species identification in clinical microbiology for the last decade. Stifled by a histori-
cal lack of open data, machine learning research towards models specifically adapted to MALDI-TOF MS
remains in its infancy. Given the growing complexity of available datasets (such as large-scale antimi-
crobial resistance prediction), a need for models that (1) are specifically designed for MALDI-TOF MS
data, and (2) have high representational capacity, presents itself.
Here, we introduce Maldi Transformer, an adaptation of the state-of-the-art transformer architecture
to the MALDI-TOF mass spectral domain. We propose the first self-supervised pre-training technique
adapted to mass spectra. The technique is based on shuffling peaks across spectra, and pre-training
the transformer as a peak discriminator. Extensive benchmarks confirm the efficacy of this novel de-
sign. The final result is a model exhibiting state-of-the-art (or competitive) performance on downstream
prediction tasks. In addition, we show that Maldi Transformer’s identification of noisy spectra may be
leveraged towards higher predictive performance.
All code supporting this study is distributed on PyPI and is packaged under: https://github.com/
gdewael/maldi-nn
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1. Introduction

Matrix-assisted laser desportion/ionization time-of-
flight mass spectrometry (MALDI-TOF MS) is a pro-
teomic technique commonly used to identify micro-
bial species (Dauwalder et al., 2023). First introduced
to clinical microbiology at the end of 2010, its routine
use is characterized by low-cost, speed, and reliability
(Weis et al., 2020a). MALDI-TOF MS generates spec-
tra containing peaks signifying mostly ribosomal pro-
teins (Seng et al., 2009). As such, the spectra can serve
as fingerprints indicative of species identity (Bizzini
et al., 2011).

For bacterial species identification, clinical diag-
nostic labs will typically use the solutions provided
by MALDI-TOF MS manufacturers. These solutions
are built on large, proprietary, in-house databases
(Van Belkum et al., 2012). The models used in such so-
lutions presumably rely on querying certain marker
peaks to a large database (Florio et al., 2018). This
strategy works reasonably well for identification of
most species, but some strains remain problematic to
identify this way (Cao et al., 2018; Vrioni et al., 2018).
In addition, the peak-matching approach does not suit
more-difficult prediction tasks such as strain typing

(Hettick et al., 2006), antimicrobial resistance predic-
tion (Weis et al., 2022), and virulence factor detection
(Gagnaire et al., 2012). In these cases, researchers
turn to machine learning in order to possibly mine
more-intricate patterns from the spectra.

Historically, machine learning for MALDI-TOF MS
has been stifled by a lack of large open data.
Because of this, the nascent field has not often
progressed beyond off-the-shelf learning techniques
(Weis et al., 2020a). Only a handful of examples exist
of more advanced machine learning methods specif-
ically adapted to a MALDI-TOF-based task (Vervier
et al., 2015; Weis et al., 2020b; Mortier et al., 2021;
De Waele et al., 2023). As such, the design of machine
learning algorithms specifically for MALDI-TOF mass
spectra has not been studied yet in sufficient detail.

Typically, MALDI-TOF-based machine learning
methods either discretize the (𝑚/𝑧)-axis, or pre-
select a number of peak locations as features based
on training set characteristics. Discretizing the
(𝑚/𝑧)-axis results in fixed-length spectral repre-
sentations, where every feature consists of a bin.
If bins are chosen too large, resolution is lost and
multiple peaks may be lumped together. On the
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other hand, small bins result in a higher-dimensional
representation where most bins contain no peaks,
unnecessarily adding model complexity (Weis et al.,
2020b; Mortier et al., 2021). Other works select a
fixed set of (𝑚/𝑧) locations based on training set
characteristics (Tran et al., 2021). Features for every
spectrum are then derived by encoding the peak
height (or binary peak presence) for every selected
(𝑚/𝑧) location. The disadvantage here is that spectra
may contain important peaks not included in the
fixed set of selected (𝑚/𝑧) locations. Hence, the
model is unable to cope with patterns differing too
much from general training set characteristics (e.g.
rare peaks).

The information in MALDI-TOF spectra are defined
by their peaks (typically associated with ribosomal
subunits) (Ryzhov and Fenselau, 2001). As such, we
argue that, ideally, a machine learning model for
MALDI-TOF mass spectra operates directly on sets of
peaks as inputs. This, however, constitutes a non-
trivial machine learning setup. A kernel-based tech-
nique that processes spectra in this way was previ-
ously proposed by Weis et al. (2020b). However, their
method is difficult to scale to larger sample sizes. Con-
sequently, in this work, we propose a deep learning-
based solution operating on sets of peaks: a trans-
former for MALDI-TOF data. Transformers elegantly
operate on input sets via their permutation-invariant
self-attention operations Vaswani et al. (2017). Self-
attention can be interpreted as message passing on a
complete digraph (i.e. peaks are nodes, and all nodes
are connected to each other).

Following its rise to dominance in natural language
processing, transformers are increasingly adopted
towards biological data modalities (Clauwaert and
Waegeman, 2020; Jumper et al., 2021; Avsec et al.,
2021; Elnaggar et al., 2021). Most closely related to
the MALDI-TOF domain, transformers have also been
adapted to operate on tandem mass spectra for de
novo peptide sequencing (Yilmaz et al., 2022). This
ever-increasing adoption of transformers across sub-
fields of machine learning speaks to their general-
ity. Because they can be viewed as operating on a
complete digraph, they place no inductive bias on the
learned patterns between input tokens. This property
lends transformers supreme representational capa-
bilities, but is also the reason why they are typically
described as data-hungry. Consequently, transform-
ers are usually mentioned in the same breath as self-
supervised learning (SSL) (Liu et al., 2021). SSL is the
paradigm within deep learning wherein a supervised
learning task is designed for data that has not explic-
itly been labeled (Balestriero et al., 2023). This task

is (usually) not a useful prediction problem in itself,
but rather serves to pre-train a large model. In doing
so, greater downstream performance on tasks of in-
terest can be obtained. SSL is, therefore, most useful
in scenarios where labeled data is limited, such as the
MALDI-TOF MS domain (Weis et al., 2020a).

In the present study, we introduce Maldi Trans-
former, a deep learning architecture for processing
MALDI-TOF mass spectra. The inputs to Maldi Trans-
former consist of spectra as sets of peaks. To fully take
advantage of the transformer architecture’s represen-
tational capacity, we propose a novel self-supervised
pre-training strategy. The strategy relies on discrimi-
nating real peaks from noisy ones introduced to the
spectrum via shuffling peaks across samples. We
pre-train Maldi Transformer on the large open DRI-
AMS database (Weis et al., 2020a). Maldi Transformer
obtains strong performance on downstream bench-
marks, demonstrating the power of the approach.

2. Methods

2.1. Data

To train and test models, we use three large (> 10 000
spectra) MALDI-TOF datasets, two of which are avail-
able to the public domain. First, the recently pub-
lished DRIAMS database (Weis et al., 2022), is used
to both pre-train Maldi Transformer and to fine-tune
it on antimicrobial resistance (AMR) prediction (bi-
nary classification using a dual-branch recommender
system). The second dataset consists of the public
Robert Koch-Institute (RKI) database, covering mass
spectra from 270 species (Lasch et al., 2023). The fi-
nal used dataset is a private historical database con-
taining more than 2400 taxonomic reference strains
(covering 1088 species), cultured and analyzed by the
Laboratory of Microbiology at Ghent University. Both
datasets are used for fine-tuning on species identifi-
cation (multi-class classification). In this manuscript,
the three datasets will be abbreviated as DRIAMS, RKI,
and LM-UGent, respectively. More information on the
used datasets can be found in Appendix A.

All MALDI-TOF mass spectra are preprocessed us-
ing standard practices (Gibb and Strimmer, 2012). Fol-
lowing Weis et al. (2022), all spectra undergo the fol-
lowing steps: (1) square-root transformation of the in-
tensities, (2) smoothing using a Savitzky-Golay filter
with half-window size of 10, (3) baseline correction
using 20 iterations of the SNIP algorithm, (4) trimming
to the 2000-20000 Da range, (5) intensity calibration
so that the total intensity sums to 1. For Maldi Trans-
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former, peaks are then detected on the preprocessed
spectrum using the persistence transformation, in-
troduced by Weis et al. (2020b). While the original
publication proposes this algorithm to nullify other
preprocessing steps, we find that prior preprocess-
ing steps help peak detection (see Appendix C). As in
Weis et al. (2020b), we select the highest 200 peaks
for every spectrum as inputs1. Maldi Transformer is
compared against baseline methods, which require a
fixed-length input. For these models, instead of run-
ning peak detection as a last preprocessing step, spec-
tra are instead binned to a 6000-dimensional vector
by summing together intensities in intervals of 3 Da.

2.2. Maldi Transformer
Model In this work, we represent an input spectrum
as a set of peaks 𝑆 = {( (𝑚/𝑧)𝑖 , 𝐼𝑖)}

𝑛

𝑖=1, with each peak
characterized by its (𝑚/𝑧) value and (preprocessed)
intensity 𝐼 . To obtain a single vector representation
for each peak, the intensities 𝐼 are linearly combined
to 𝑑-dimensional space. Similarly, (𝑚/𝑧) values are
embedded to 𝑑-dimensional sinusoidal positional en-
codings, as in (Vaswani et al., 2017). Positional values
(𝑚/𝑧) are divided by a factor 10 before being embed-
ded. This division is performed to bring the numeri-
cal range of (𝑚/𝑧) values (2000 Da - 20000 Da) closer
to the numerical range of positional indices for which
this equation was originally designed2.

The sinusoidal (𝑚/𝑧) embedding and linear inten-
sity 𝐼 embedding are summed to a single input rep-
resentation per peak. A trainable [CLS] vector is
prepended to the input for spectrum-level prediction,
following common practice (Devlin et al., 2018; Doso-
vitskiy et al., 2020). The final input to the encoder-
only transformer is, hence, 𝑿 ∈ R𝑏×201×𝑑 , with 𝑏
the batch size, 201 the number of peaks plus the
[CLS] token, and 𝑑 the hidden dimensionality of the
model. The encoder-only transformer processes 𝑿
to a spectrum-level embedding 𝒑[CLS] and peak em-
beddings 𝒑𝑖∈{1,...,𝑛}. The design of the transformer
encoder blocks follows current state-of-the-art prac-
tices (Appendix F Figure 6) (Narang et al., 2021). An
overview of the model is visualized in Figure 1.

Pre-training task design To boost the performance
of Maldi Transformer on supervised tasks with lim-
ited labeled data, a novel self-supervised pre-training
strategy is designed. We propose to pre-train Maldi

1Note that Maldi Transformer can, in principle, deal with vari-
able number of peaks per spectrum.

2Language transformers are often trained with maximum se-
quence lengths between 512 and 2048. (Beltagy et al., 2020)

Transformer as peak discriminators. That is, in a
batch of spectra, some peaks are randomly sampled
to use for training. Following Devlin et al. (2018),
we sample 15% of the peaks. Half of those sam-
pled peaks are shuffled among all spectra, while the
other are kept as part of their original spectrum. Us-
ing the shuffled peaks as negative "noise" peaks in
a spectrum, a discriminative model is trained to dis-
tinguish the noise peaks from the sampled original
ones using the cross-entropy loss. A prediction as
to whether a peak constitutes a real peak is made
by linearly projecting the output peak embeddings
�̂�𝑖∈{1,...,𝑛} = 𝜎 (𝑾⊺

𝑝𝒑𝑖∈{1,...,𝑛}).

Complementary to the peak discrimination strat-
egy, the spectrum embedding 𝒑[CLS] is sent to a multi-
class linear output head to predict the microbial
species identity of the original spectrum3. The final
pre-training loss function is the sum of peak discrimi-
nation binary cross-entropy and species identification
multi-class cross-entropy: L = Lpeaks + 𝜆 Lspec,
with 𝜆 ∼ Bern(0.01). The species identification loss
Lspec is only randomly applied in 1% of the training
steps. This is performed because, empirically, over-
fitting of the species classification task is observed
when applied at every training step (see Appendix F
Figure 7). A visual representation of the entire pre-
training approach is shown in Figure 1.. Pseudo-code
for the whole strategy can be found in Appendix D Al-
gorithm 1.

Our novel peak discrimination pre-training strat-
egy is proposed due to conceptual difficulties with
porting established pre-training approaches to the
MALDI-TOF MS domain, a point further elaborated on
in Appendix D. We benchmark this novel pre-training
strategy against alternatives in §3.2.

Model configurations We train Maldi Transformer
in four different sizes: S, M, L, and XL. Model sizes are
chosen so that the total number of weights roughly
correspond to the ones in De Waele et al. (2023). Table
1 lists the size of all models, along with some hyperpa-
rameter settings. The Adam optimizer is used to pre-
train all models in BFloat16 mixed precision (Kingma
and Ba, 2014). Gradients are clipped to a norm of 1. A
batch size of 1024 is applied for all models. A linear
learning rate warm-up is applied over the first 2500

3While this is not a purely self-supervised training objective, we
justify its use with the fact that MS manufacturers’ species identi-
fication pipelines automatically deliver these labels. As such, no
manual labeling is necessary to obtain these labels. Additionally, it
has to be noted that, as not all spectra in DRIAMS carry a species
label, the species classification loss is only calculated for labeled
spectra.
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Figure 1 | Left: Representation of MALDI-TOF spectra. A raw spectrum gets preprocessed, after which a topo-
logical persistence transformation is performed to detect peaks, resulting in a sparse representation of the
spectrum (Weis et al., 2020b). Middle: Maldi Transformer. Peak intensity 𝐼 and (𝑚/𝑧) values are embedded to
higher dimensional space by a linear layer and sinusoidal embedding, respectively, and are then summed. A
[CLS] token is prepended, and the resulting vectors 𝒙 are sent through multiple Transformer encoder layers.
The resulting outputs 𝒑𝑖∈{1,...,𝑛} and 𝒑[CLS] can be used as peak and spectrum-level embeddings, respectively.
Right: Proposed peak discrimination pre-training strategy. In a mini-batch of spectra, 15% of peaks are ran-
domly sampled, half of which are shuffled among all spectra in the batch. The spectra are then encoded with
Maldi Transformer. The resulting peak embeddings 𝒑𝑖∈{1,...,𝑁} are sent through a linear output head trying to
distinguish original peaks (blue) from shuffled "noise" peaks (orange). Spectrum embeddings 𝒑[CLS] are sent
through a separate linear head to predict species identity (green).

Table 1 | Pre-training configurations for different
Maldi Transformer sizes.

Model

Hyperparameter S M L XL

# params 1.65M 3.27M 6.92M 14.84M
# layers 4 6 8 10
hidden dim 𝑑 160 184 232 304
# heads 8 8 8 8
Learning rate 5e-4 5e-4 5e-4 3e-4
Pre-training steps 500 000 500 000 500 000 400 000
Species clf 𝜆 Bern(0.01) Bern(0.01) Bern(0.01) Bern(0.005)

steps, after which the learning rate remains constant
(Table 1). During training, a dropout of 0.2 is applied
in the GLU feedforward and over the attention matrix.

2.3. Downstream tasks

As mentioned in §2.1, Maldi Transformer’s perfor-
mance is validated on three downstream supervised
tasks. For all three tasks, the pre-trained model is
plugged in at initialization and all weights are fine-

tuned (i.e. no weight freezing). A task-specific lin-
ear output head𝑾 𝑜𝑢𝑡 projecting the spectrum embed-
ding 𝒑[CLS] to the desired output space is trained from
scratch. For AMR prediction, Maldi Transformer is
used as a spectrum embedder in a dual-branch neu-
ral network recommender system. To compare its
performance against previous results, recommenders
are trained with the four best-scoring drug embed-
ders in De Waele et al. (2023). To benchmark Maldi
Transformer in terms of species identification, the
RKI and LM-UGent datasets are used. Species identifi-
cation is compared to MLP baselines, Logistic Regres-
sion, Random Forest, and k-nearest neighbors (k-NN)
models. Details on the exact training setups for each
downstream tasks are found in Appendix E.

The LM-UGent dataset covers a broader species di-
versity than the clinical species found in the pre-
training set. As such, this dataset can be considered
out-of-distribution for the pre-trained Maldi Trans-
former. For this reason, a domain adaptation step on
the pre-trained Maldi Transformer is performed be-
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fore supervised fine-tuning. The domain adaptation
step consists of pre-training Maldi Transformer for 20
000 additional steps in the same fashion, but now us-
ing the LM-UGent dataset, instead of DRIAMS4.

3. Results

3.1. Maldi Transformer improves perfor-
mance on downstream tasks

Pre-training curves for Maldi Transformer are shown
in Appendix F Figure 8. After pre-training, Maldi
Transformer is fine-tuned w.r.t. a downstream task.
Maldi Transformer’s downstream performance is
compared to preprocessed and binned baselines. For
AMR prediction, it is compared to MLPs of similar
sizes. For species identification, it is additionally com-
pared to non-neural network baselines.

Figure 2 shows the experimental results for all
downstream tasks. For AMR prediction, models are
evaluated in terms of micro ROC-AUC and instance-
wise ROC-AUC5. For species identification, they are
evaluated in terms of species- and genus-level accu-
racy. In general, Maldi Transformer obtains supe-
rior performance in comparison to other tested meth-
ods. For AMR prediction, Maldi Transformer consis-
tently outperforms all MLP models in terms of mi-
cro ROC-AUC. In terms of the instance-wise ROC-AUC,
Maldi Transformer is sometimes outperformed by
MLP models, but the best-scoring model overall is still
one using Maldi Transformer (i.e. the large model
paired with a Morgan fingerprint drug embedder).

For species identification on the RKI dataset, Maldi
Transformer does not always provide a clear advan-
tage. On species-level, it is consistently outperformed
by both Logistic Regression and similar-sized MLPs.
For genus-level accuracy, however, Maldi Transform-
ers outshine their MLP counterparts. While a k-NN
model provides competitive performance, the best
overall model in terms of genus-level accuracy is the
large Maldi Transformer.

On the larger and more-difficult LM-UGent dataset,
results are again more convincing. The best-
performing species-level model is the medium-sized
Maldi Transformer, convincingly beating other mod-
els with 84% accuracy. The same results are obtained

4By performing domain adaptation, in contrast to the other su-
pervised tasks, the task-specific output head𝑾𝑜𝑢𝑡 does not need to
be initialized from scratch anymore, but can be copied from the
pre-trained model, as it already has the right dimensions.

5An explanation of the instance-wise ROC-AUC is given in
De Waele et al. (2023).

on genus-level accuracy, where Maldi Transformer
consistently beats other models.

We hypothesize that, on small MALDI-TOF datasets
with relatively-simple prediction tasks (e.g. the
RKI dataset), simple models are sufficient, but
Maldi Transformer remains competitive. For
comparatively-complex tasks, such as AMR pre-
diction with dual-branch neural networks, and
species identification across >1000 species, Maldi
Transformer consistently delivers state-of-the-art
performance.

3.2. Maldi Transformer pre-training ab-
lation

To further validate the efficacy of the proposed
Maldi Transformer, its performance is compared
against two alternative realizations of transformers
on MALDI-TOF MS data (i.e. using two alternative
pre-training strategies). The first one takes inspira-
tion from the masked language model (MLM) BERT
(Devlin et al., 2018). Here, intensity values of peaks
are randomly masked out, and a transformer is pre-
trained to predict the original intensities back using
the mean squared error loss. In the second, a discrim-
inative model much like our final proposed strategy
is trained. The difference in this model is that neg-
ative peaks are sampled from some estimated distri-
bution of peaks, instead of generating negative peaks
by shuffling. Both alternative strategies are described
in greater detail in Appendix D.

In Figure 3.2A, it is observed that both alternative
pre-training techniques are outperformed by our fi-
nal proposed strategy. Naively porting the MLM strat-
egy to peak intensity regression underdelivers by a
wide margin. We hypothesize that the intensity of
a peak is of lesser importance compared to whether
said peak is present or not, hence making a regres-
sion model learn superfluous information. A more-
biologically relevant training objective would be to
make the model learn over peak co-occurrence. A
negative peak sampling strategy paired with a binary
discrimination objective would achieve such a task.
It can be seen from Figure 3.2A that this task, how-
ever close in concept to the final Maldi Transformer,
still consistently underperforms. A possible explana-
tion could be that the estimation of negative peaks re-
lies on some estimated overall distribution of peaks.
Any inaccuracies in this distribution results in "un-
realistic" negative peaks, which are easier to recog-
nize by the model. Thus, instead of truly reasoning
over peak co-occurrence, the model takes a shortcut
and learns the inaccuracies of the underlying peak
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drug embedders in a dual-branch recommender system. B: Species identification results on the RKI dataset. C:
Species identification results on the LM-UGent dataset.
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Figure 3 | Barplots of all ablation results. Only results for Medium-sized transformers are shown. The final
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not performed for ablation models. See Appendix F Figure 9 for the effects of this step. A: Testing different ways
of pre-training a transformer on MALDI-TOF MS data. B: Leaving out different parts of the final pre-training
strategy.

sampler. Our final peak shuffling strategy does not
have this drawback, and is, therefore, ideally suited
for the MALDI-TOF MS domain, also resulting in su-
perior performances.

Figure 3.2B shows ablation results when leaving
different parts out of the final pre-training strategy.
Maldi Transformer is compared to models where one
of the two loss components are left out: either the
peak discrimination loss (Lpeaks), or the species iden-
tification loss (Lspec). It is also compared to a trans-
former model without pre-training whatsoever. It can
be seen that the latter strategy (i.e. training a sepa-

rate transformer from scratch for every supervised
task), delivers subpar performance. In addition, only
pre-training on species identification does not help by
much. The biggest gain is made from the peak dis-
crimination task. But, overall, the effects are additive,
showing that each part contributes to the final perfor-
mance.

3.3. Maldi Transformer model analysis
Due to its pre-training design, Maldi Transformer out-
puts the probability of a peak belonging to its spec-
trum for every peak: Pr(𝒑 = 1∣S) = 𝜎(𝑾⊺

𝑝 ⋅ 𝒑). Dur-
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ing pre-training, as peaks are shuffled between spec-
tra, one expects to encounter both positives and nega-
tive true labels. In this section, we examine how peak
output probabilities Pr(𝒑 = 1∣S) may be used during
inference (i.e. without shuffling). The interpretation
of probabilities requires a model to be calibrated. This
property is further examined in Appendix F Figure 10.
Results in the following paragraphs are derived from
the DRIAMS pre-training test set.

Maldi Transformer denoises spectra In Figure 4A,
a randomly selected Staphylococcus epidermidis6

spectrum is visualized, each peak colored according
to its output probability Pr(𝒑 = 1∣S). Most peaks
are (correctly) assigned a high probability of belong-
ing to their spectrum. The peaks with a low proba-
bility could be mistaken by the model, or could rep-
resent "true" noise in the spectrum. Such noise may
still be present in the final spectrum due to, for ex-
ample (1) noisy readouts from the spectrometer, or
(2) shortcomings in preprocessing. In order to vali-
date this hypothesis, it makes sense to look at patterns
across multiple spectra. In Figure 4E, all S. epidermidis
spectra are visualized together, each peak as a single
dot. Black dots represent peaks that are predicted to
be noise with high probability (Pr(𝒑 = 1∣S) ≤ 0.05).
In the magnified parts of the plot, it can be seen that
blue dots cluster together, meaning that S. epidermidis
spectra often have peaks in the same places. Black
dots mainly fall outside or on the edges of those clus-
ters, signifying that those peaks are rightly picked up
by the model as noise. Consequently, Maldi Trans-
formers can serve a broader purpose as spectrum de-
noisers, in addition to their supervised learning capa-
bilities.

Noisy peaks are indicative of downstream perfor-
mance In order to better grasp the effect of noisy
peaks on spectra, peak predictions are examined
across all spectra in the DRIAMS test set. Figure 4B
shows the empirical cumulative distribution of peak
output probabilities. Only approximately 5% of all
peaks are assigned a probability lower than 50% of
belonging to their respective spectrum Pr(𝒑 = 1∣S).
Conversely, half of the peaks are predicted with a
probability of 98.5% or greater. This shows that while
noisy peaks do exist, they typically make up a small
percentage of the overall input spectrum.

Noisy peaks may not uniformly occur across the
dataset. Some spectra may have more noisy peaks

6Staphylococcus epidermidis is the most occurring species in the
DRIAMS pre-training test set.

than others. A good spectrum quality statistic can,
hence, be the fraction of peaks that are confidently
predicted as "true", e.g. with a probability greater
than 95%. Figure 4C shows the distribution of spec-
tra in function of this statistic. A slight left tail in the
distribution signifies that some spectra have a large
amount of noisy peaks. Aproximately 10% of the spec-
tra have more than half of their peaks predicted with
a probability smaller than 95%. Figure 4D shows that
this statistic is also indicative of predictive perfor-
mance. Spectra with more confidently "belonging"
peaks have a higher species-level accuracy (on DRI-
AMS test set labels). Species-level accuracy ramps up
from 90% (or lower) for spectra with a lot of noisy
peaks, up to nearly-perfect accuracy for spectra with
(almost) all "predicted true" peaks7. The fraction of
"predicted true" peaks also correlates with prediction
certainty (see Appendix F Figure 11). These results
showcase Maldi Transformer’s ability to not only im-
prove performance, but also provide further insights
into the data.

4. Discussion

As with many subfields of machine learning, size,
quality, and diversity of data constitute a huge bottle-
neck. In this study, an apparent ceiling in represen-
tational capacity has been obtained given the avail-
able public data. This is evidenced by the fact that
the XL variant of Maldi Transformer typically does
not give an advantage in downstream tasks over the
M or L model. Its size (∼15M weights), however, is
still small by self-supervised transformer standards.
We hypothesize that the representational capacity of
larger transformers is simply not necessary for the
relatively-simple datasets that are available in the
MALDI-TOF MS domain. Because of this, we argue
that more efforts to collect and publicize data may be
the most important factor for MALDI-TOF-based ma-
chine learning research to continue to flourish. As
spectral data is routinely generated within hundreds,
if not thousands, of hospitals, we envision collabora-
tion efforts with healthcare (à la Weis et al. (2022)) to
play a crucial role in this regard.

Deep learning models have been hailed as feature
extractors. For this class of models, it is typically ar-
gued that it matters less how features are presented
to the model, as they can compose the relevant fea-

7Note that DRIAMS species labels are produced from the MS
manufacturers’ software and models. It can be expected that it
is relatively easy for a model to reproduce the labels (predictions)
from another model. Hence, the nearly-perfect species-level accu-
racy on DRIAMS is not unexpected.
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Figure 4 | Maldi Transformer analysis on DRIAMS pre-training test data. Note that no shuffling of peaks across
spectra is performed to generate these plots. Each spectrum contains their original detected peaks. A: A ran-
domly selected spectrum, each peak colored by the models output probability of that peak belonging to that
spectrum or not Pr(𝒑 = 1∣S). B: Empirical cumulative distribution of those output probabilities over all spec-
tra in the DRIAMS test set. C: Histogram of fraction of peaks confidently (> 0.95) predicted as "true" peaks per
spectrum. D: Species-level accuracy in function of fraction of peaks confidently (> 0.95) predicted as "true"
peaks per spectrum. E: All S. epidermidis spectra visualized together, every peak as a separate dot. Peaks confi-
dently predicted as "noise" (≤ 0.05) are shown in black. Zoomed in subplots show that "noise" peaks originate
outside clusters of usual peak locations.

tures themselves in their hidden representations. We
would caution against this perspective, and state that
how inputs are presented to a deep learning model
could have far-reaching impacts on what the model
can learn. Taking language as an example, character-
level language models traditionally underperform the
same models trained on (sub)word-level. In this work,
MALDI-TOF mass spectra are presented to the model
by their peaks. Because of this, any preprocessing
steps and algorithms to determine said peaks play
crucial roles in the final performance of the model.
For this reason, experimentation with peak detection
algorithms is a promising future research direction.

While this work is not the first to fit a transformer
model on mass spectral data (Yilmaz et al., 2022), it
is the first to propose a self-supervised learning strat-
egy adapted to this data modality. It is expected that
the combination of shuffling peaks to obtain nega-
tive examples, paired with a peak discriminator could
be useful in other mass spectral domains. Namely,
the types of mass spectra where the (co-)occurrence
of peaks constitute the most-critical biological signal.
For this reason, we hope that our ablations (§3.2) and
discussion in Appendix D serve as useful guidelines

for adapting this work to other mass spectral data
modalities.

As the pre-trained model can be interpreted as
learning peak co-occurences, this property is exam-
ined in §3.3. There, it is shown that Maldi Trans-
former can be used to detect noisy peaks. The pre-
dicted absence of which is found to correlate with
higher predictive performance. These insights go be-
yond those offered by off-the-shelf machine learning
techniques. Paired with its state-of-the-art (or compet-
itive) performance results, it can be concluded that
Maldi Transformer enhances what biological practi-
tioners get out of their MALDI-TOF MS data.
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A. Data sources

To train and test models, we use three large (> 10 000
spectra) MALDI-TOF datasets, two of which are avail-
able to the public domain. First, the recently pub-
lished DRIAMS database (Weis et al., 2022), is used to
both pre-train Maldi Transformer and to fine-tune it
on antimicrobial resistance (AMR) prediction (binary
classification using a dual-branch recommender sys-
tem). DRIAMS contains a total of 250 070 spectra, orig-
inating from four hospitals in Switzerland. For AMR
prediction, the same data splits are used as in ear-
lier work (De Waele et al., 2023). Briefly, DRIAMS-
A spectra from before 2018 are split to the training
fraction, whereas DRIAMS-A spectra measured dur-
ing 2018 are evenly split between validation and test
set. For pre-training, the same splits are used, but all
spectra from DRIAMS-B, -C, and -D are additionally
added to the training set. Apart from AMR measure-
ments, DRIAMS contains species labels for many spec-
tra. These labels are derived from the species iden-
tification pipelines included with the MALDI-TOF MS
machines. After processing (see Appendix B), the pre-
training DRIAMS dataset spans 469 species.

The second dataset consists of the public Robert
Koch-Institute (RKI) database (Lasch et al., 2023). The
final used dataset is a private historical database con-
taining more than 2400 taxonomic reference strains,
cultured and analyzed by the Laboratory of Microbi-
ology at Ghent University. Both datasets are used for
fine-tuning on species identification (270- and 1088-
way multi-class classification, respectively). In this
manuscript, both datasets will be abbreviated as RKI
and LM-UGent, respectively. The RKI dataset contains
MALDI-TOF mass spectra from highly pathogenic bac-
teria, covering similar species as in DRIAMS. The LM-
UGent dataset, on the other hand, includes a broader
taxonomic range.

In order to create a challenging training-validation-
test split, spectra are split in such a way that there
is no overlap in terms of strains. As a consequence,
the models are tested whether they can identify un-
seen strains of (seen) species. The following rules are

used in data splitting: all spectra for a species are as-
signed to the training set if that species only has one
strain in the dataset. If the species has more than
one strain, strains are split such that 80% of strains
of that species are assigned to the training set, and the
other 20% evenly split between validation and test set
(with a floor value of at least one strain being assigned
to either validation or test set). The total number of
species in the RKI training set spans 270, of which 106
and 108 are present in the validation and test set, re-
spectively. For the LM-UGent dataset, these numbers
are 1088, 200, and 202, for the training, validation
and test set, respectively. For more details on the LM-
UGent dataset, the reader is referred to Mortier et al.
(2021). Table 2 lists a summary of the sizes of all used
data.

Table 2 | Data sources used, along with their use and
sizes (in number of spectra).

Dataset Used for Train-Val-Test
Size

DRIAMS Pre-training 207 172 - 21 440 - 21 443𝑎,𝑏

DRIAMS-A Fine-tuning on
AMR prediction 28 331 - 4 994 - 4 999𝑐

RKI Fine-tuning on
species identification 8 442 - 1 350 - 1 263𝑑

LM-UGent Fine-tuning on
species identification 88 267 - 8 710 - 8 700𝑒

𝑎 Contains all spectra in DRIAMS with at least 200 detected peaks.
𝑏 Of which 97 783, 14 055, and 14 183 have species labels in train, val and test
splits, respectively.
𝑐 Numbers reflect spectra. In total, 409 395, 76 431, and 76 133 AMR labels
across 65 drugs are associated with those splits.

B. DRIAMS species processing

DRIAMS contains species labels for many spectra.
These species labels are derived from the species
identification pipelines included with the MALDI-TOF
MS machines. As such, some preprocessing steps are
taken to make the labels as presentable as possible to
an ML model.

Firstly, labels in DRIAMS containing the string "not
reliable identification" are integrally deleted.
Second, many spectra are labeled as "MIX!species",
indicating that the spectrum potentially contains an
impure mixture of species. As such, species labels for
these spectra are also not used. Additionally, species
labels that occur fewer than five times in the train-
ing set are removed. Finally, species labels occurring
only in the validation or test set, but not in the training
set, are similarly removed. After processing, DRIAMS
contains 469 different species labels. Note that the
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previous steps involve removing of labels, not spec-
tra themselves. Corresponding spectra are still kept
in the dataset, albeit without a species label.

C. On preprocessing and persis-
tence transformation

While Weis et al. (2020b) argue that persistence trans-
formation nullifies the need for the parameter-heavy
chain of preprocessing steps, we advocate for the op-
posite. To support this stance, a simple exploratory
visualization is made.

In Figure 5, all Bacillus anthracis8 spectra in the RKI
training set are put through two preprocessing chains.
The first only does (1) trimming to the 2000-20000 Da
range, (2) intensity calibration so that the total inten-
sity sums to 1, and (3) persistence transformation, and
keeps the 200 highest peaks. The second preprocess-
ing chain performs all those steps preceded by vari-
ance stabilization, smoothing, and background re-
moval, as in §2.1. Then, across all preprocessed spec-
tra, the occurrence of detected peaks in bins of 3 Da is
counted and plotted in Figure 5. The resulting profile
can be considered a summary profile of all detected
peaks in Bacillus anthracis spectra. The detected
peaks with extra preprocessing result in a cleaner
profile, with peaks more concentrated in regions that
clearly correspond to biologically-informative signal
(especially notable when inspecting the left tail of
the spectra). In contrast, without prior preprocess-
ing, detected peaks are seemingly more-randomly dis-
tributed, hinting that noise in the spectrum negatively
affects peak detection.

Figure 5 | Visualization of summary profiles of Bacil-
lus anthracis RKI training spectra obtained when do-
ing peak detection with (R) or without (L) preprocess-
ing first.

8Bacillus anthracis is chosen because it is the most occurring
species in the RKI training dataset.

D. Design of a self-supervised pre-
training task

A large part of this study concerns the design of a
self-supervised pre-training task for MALDI-TOF MS
data. This is motivated by the scarcity of data in this
domain. Through self-supervised learning, a greater
representational capacity can be obtained, maximally
utilizing patterns in the data. The following para-
graphs chronicle thoughts and experiments w.r.t. the
design of the SSL task.

MALDI-TOF MS spectra can be represented as sets
of peaks. As each peak is characterized by an inten-
sity and an (𝑚/𝑧) value, a natural parallel is drawn
with language data. Instead of a sequence of words,
a sequence of peaks is processed. A crucial differ-
ence is that, for language transformers, positional in-
dices for each text "token" are set to the integer range
numbering 0 to 𝑛 − 1, with 𝑛 the number of tokens
in the input sequence. With MALDI-TOF MS spec-
tra, positional indices (i.e. (𝑚/𝑧) values) are irregu-
larly spaced and real-valued. Additionally, whereas
words have a categorical identity in text, MALDI-TOF
MS intensity is also real-valued. These two factors
have to be taken into consideration when porting self-
supervised learning techniques from one modality to
the mass spectral domain.

In language transformer pre-training, perhaps the
two most-classically quoted techniques are masked
language modeling (MLM) (Devlin et al., 2018) and au-
toregressive modeling (AR) (Radford et al., 2018). The
GPT series of models best exemplifies the success of
the latter category (Brown et al., 2020). For MALDI-
TOF MS, however, it is unclear how to autoregres-
sively model a set of peaks. Autoregressive models im-
ply a certain ordering of data, whereas this perspec-
tive is ill-fitting for the set-valued peaks input. For
example, how does one train to generate the "next"
peak given the previous peaks, if it is unclear how
to define what the "next" peak is? For example, does
one choose to order peaks by their height, or by their
(𝑚/𝑧) value? If the model predicts the second-next
peak instead of the next, is that necessarily wrong? If
not, how to efficienctly construct the loss to take this
into account?

Instead of answering the issues with autoregres-
sively modeling a set-valued input, the alternative
strategy: MLM, introduced by BERT (Devlin et al.,
2018), may be considered. For example, instead of
masking out words, intensities can be masked, and a
model can be trained to recover the intensities with
the use of the mean-square error loss. This brings
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us to first ablated pre-training technique in §3.2. The
training for this strategy is performed identical to the
final strategy outlined in §2.2. The only difference
being that the peak discrimination loss Lpeaks is ex-
changed for the mean-square error loss on masked
peaks. Peaks to train on are similarly selected with
15% probability. Of those 15%, 80% are assigned
masked intensities and 20% are left unchanged.

After fitting a regression MLM on intensities with
limited success, a logical next step is to design a self-
supervised classification task. The following para-
graphs describe the exact procedure resulting in the
negative peak sampler model in §3.2.

Taking inspiration from contrastive learning (Liu
et al., 2021), a per-peak classification task can ask a
model whether a peak belongs to the rest of the spec-
trum or not. Just as in contrastive learning, this strat-
egy requires to sample negative peaks to deliver neg-
ative samples. One way to generate negative peaks is
to randomly generate them from some estimated dis-
tribution of peaks. Here, we estimate the distribution
of peaks in two steps. First, all peaks in the training
dataset are collected: 𝑃train = { (𝑚

𝑧
)
𝑗

»»»»»» (
𝑚
𝑧
)
𝑗
∈ 𝑆𝑖}

𝑛

𝑖=1
,

and a probability mass function over discrete bins is
calculated:

Pr(𝑏𝑖) =
»»»»»» {𝑝 𝑗∣𝑝 𝑗 ∈ 𝑃train ∧ 𝑝 𝑗 ∈ 𝑏𝑖}

»»»»»»»»»»»» {𝑝 𝑗∣𝑝 𝑗 ∈ 𝑃train}
»»»»»»

(1)

with bins chosen by 1 Da intervals: 𝑏𝑖 ∈ ]𝑖, 𝑖 + 1],
for 𝑖 ∈ {2000, 2001, ..., 19 999}. In other words, a
probability mass function over 1 Da bins is created
by counting how many times peaks fall into each bin
in the training data. Next, within each bin, quan-
tiles of the found intensities therein are calculated:
𝑄𝑏𝑖 = {𝑞0.00, 𝑞0.01, ..., 𝑞0.99, 𝑞1.00}. To sample a
negative peak, an (𝑚/𝑧) value is first sampled by
uniformly sampling a location within a sampled bin:
(𝑚/𝑧) ∼ Pr(𝑏𝑖) + U[0,1]. After, an intensity
is drawn by uniformly sampling within a uniformly
sampled interquantile range: 𝐼 ∼ U[𝑞 𝑗 ,𝑞 𝑗+1 ∣ 𝑞 ∈ 𝑄𝑏𝑖 ],
with 𝑗 ∼ U{0.00,0.01,...0.99}. The training for this strategy
is performed identical to the final strategy outlined in
§2.2. The only difference being that, instead of shuf-
fling peaks around to generate negatives, negative
peaks are now sampled. In every training step, 15%
of the peaks are selected for training, half of which
are exchanged for sampled negative ones.

As discussed in §3.2, generating negative peaks is
not ideal for forcing the model to reason over peak co-

occurrences. The model is allowed to learn any mis-
representation in negatives as a shortcut. A way to
circumvent the issues with generating negative peaks,
is to use real ones. One way to present real peaks as
negatives, is to take them from other spectra. This is
where we land on the final self-supervised strategy
that we test, and ultimately propose in our main text
(see §2.2, Figure 1, and Algorithm 1).

Algorithm 1: Pseudo-code Maldi Transformer
peak discrimination pre-training

Input: 𝑺 ∈ R𝑏×𝑛×2 , 𝒚𝑠 ∈ R𝑛

# 𝑏 = batch size, 𝑛 = number of peaks, 2 = {(𝑚/𝑧), 𝐼}
# 𝑺 = spectrum, 𝒚𝑠 = species label
# 𝒚𝑠 contains integer labels and NaNs if spectrum is

unlabeled

1 Let𝑼 ∈ R𝑏×𝑛 , with𝑈𝑖 𝑗 ∼ Bern(0.15) # Sample 15% of peaks
2 𝑰 = Indices(𝑼 == 1) # Get indices of sampled peaks
3 𝑷,𝑵 = Split(𝑰) # Split half of indices to pos & neg
4 𝑵 = Shuffle(𝑵) # Shuffle negative indices
5 𝑺shuffled = 𝑺[𝑵] # Re-index neg peaks in shuffled order
6 Let𝒀 𝑝 = NaN𝑏×𝑛 # Init peak labels as NaNs
7 𝒀 𝑝[𝑷] = 1 # Fill peak labels.
8 𝒀 𝑝[𝑵] = 0 # Note that 85% of 𝒀 remains NaN.
9 𝒑𝑖∈{1,...,𝑛} , 𝒑[CLS] = MaldiTransformer(𝑺shuffled)

10 �̂� 𝑝 = 𝜎(𝑾⊺
𝑝 ⋅ 𝒑𝑖∈{1,...,𝑛}) # Projection of peak embeddings

11 �̂� 𝑠 = Softmax(𝑾⊺
𝑠 ⋅ 𝒑[CLS]) # Projection of spec embed

12 Lpeaks = BCE(�̂� 𝑝 ,𝒀 𝑝)[𝒀 𝑝!= NaN] # peak discrimination
13 Lspec = CE(�̂� 𝑠 , 𝒚𝑠)[𝒚𝑠!= NaN] # species ID loss
14 L = Lpeaks + 𝜆 ⋅Lspec , with 𝜆 ∼ Bern(0.01)

Output: L # Final loss

E. Downstream tasks and base-
lines

For all three downstream tasks, the pre-trained model
is plugged in at initialization and all weights are fine-
tuned (i.e. no weight freezing). A task-specific lin-
ear output head𝑾 𝑜𝑢𝑡 projecting the spectrum embed-
ding 𝒑[CLS] to the desired output space is trained from
scratch. All downstream models are similarly trained
with the Adam optimizer with a batch size of 128 and
dropout of 0.2. A linear learning rate warm-up over
the first 250 steps is applied, after which the rate is
kept constant.

For AMR prediction, training of Maldi Transformer-
based recommenders is performed identical to the
MLP-based baselines in De Waele et al. (2023). Briefly
explained, for every combination of spectrum em-
bedder (four sizes: S, M, L, and XL) and drug em-
bedder (four types), four different learning rates
({1e-5, 5e-5, 1e-4, 5e-4}) are tested For all these dif-
ferent combinations, three models are trained (using
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different random seeds for model initialization and
batching of data). For every spectrum and drug em-
bedder combination, only results from the best learn-
ing rate are presented; that is, the learning rate re-
sulting in the best average validation micro ROC-AUC
for that combination. The validation set is checked ev-
ery tenth of an epoch. Models are trained for a max-
imum of 50 epochs, and their training is halted early
when validation micro ROC-AUC hasn’t improved for
10 validation set checks. The checkpoint of the best
performing model (in terms of validation micro ROC-
AUC) is used as the final model. The baselines for
the AMR prediction task are the models described in
De Waele et al. (2023), which describes the recom-
mender model structure in greater detail.

The pre-training of Maldi Transformer for species
identification is performed in a similar way. The dif-
ferences consist of: (1) 𝑾 𝑜𝑢𝑡 returning 270, or 1088,
for the RKI and LM-UGent dataset, respectively, (2)
aside from the other four, a learning rate of 1e-3 is
also tested, and (3) validation species-level accuracy
is tracked to halt training early (for a maximum of
250 epochs, and it is only checked once per epoch).
As species identification is a multi-class classification
task, models are then optimized using a softmax oper-
ation, combined with the cross-entropy loss. Species
identification is compared to MLP baselines, Logistic
Regression, Random Forest, and k-nearest neighbors
(k-NN) models. All of these baselines are trained on
preprocessed and binned spectra (see §2.1). The S, M,
L, and XL MLPs are identical in construction to the
spectrum embedders in De Waele et al. (2023), but
with 𝑛-dimensional outputs instead of 64, with 𝑛 the
number of classes (see Table 3). MLP baselines are
trained using the same strategy as Maldi Transform-
ers. That is, for all model sizes, five different learn-
ing rates ({1e-5, 5e-5, 1e-4, 5e-4, 1e-3}) are trained in
triplicates. Model results from the best learning rate
(in terms of validation species-level accuracy) are pre-
sented. Model training halts before its maximum of
250 epochs if validation species-level accuracy hasn’t
increased in 10 epochs, and the model with the best
validation accuracy is saved.

For non-neural baseline classifiers (Random For-
est, Logistic Regression, and k-NN), a grid-search is
performed to find optimal hyperparameters. Given
the non-stochastic nature of their implementations,
only one model is trained after tuning and, hence,
only one test performance is reported. The param-
eter grid for Random Forest consists of {max_depth
= [25,50,75,100], min_samples_split = [2,5,10],
max_features = [10,25,50,100]}. All random
forests are trained with 200 trees. For Logistic Regres-

Table 3 | All tested model sizes for the MLP base-
line Hidden sizes represent the evolution of the hid-
den state dimensionality as it goes through the model,
with every hyphen defining one fully connected layer.
𝑛 represents the number of output nodes. 𝑛 equals
64, 270, and 1088 for DRIAMS AMR prediction, species
identification on RKI, and LM-UGent, respectively.

Size # Weights Hidden sizes

S 1.58M 6000-256-128-𝑛
M 3.25M 6000-512-256-128-𝑛
L 6.85M 6000-1024-512-256-128-𝑛
XL 15.09M 6000-2048-1024-512-256-128-𝑛

sion: {standardscaling = [True,False], L2_norm
= [1e3,1e2,10,1,0.1,1e-2,1e-3]}. And for k-NN:
{standardscaling = [True,False], n_neighbors =
[1,2,3,4,5,6,7,9,10,25].

F. Figures and tables supporting
the methods and results sec-
tions

Figure 6 | Utilized transformer encoder block. The
network uses pre-LayerNorms and GeLU gated lin-
ear units (GLU) in the feedforward (FF) networks (Ba
et al., 2016; Shazeer, 2020).
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Figure 7 | Pre-training dynamics using different
strategies for combining the peak discrimination loss
Lpeaks and the species identification loss Lspec. Loss
on the validation set is shown. The figure is shown
only for the first 200 000 pre-training steps using a
medium-sized Maldi Transformer to illustrate. It is
observed that if Lspec is applied at every step (using
a weight of 0.01 or 1.00), species classification quickly
overfits and peak discrimination learning is hindered.
By not applying Lspec at every training step, the Adam
optimizer momentum is dominated by Lpeaks. As
Lspec is the "easier" task and more prone to overfit-
ting, this regime benefits the final model.
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Figure 8 | Pre-training validation loss curves for all
Maldi Transformer model sizes.
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(No self-supervised
fine-tuning on
LM-UGent)

Figure 9 | LM-UGent performance improves when,
prior to supervised fine-tuning, the pre-trained model
is first fine-tuned using the self-supervised training
task. In the main text, we refer to this step as the do-
main adaptation step.
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Figure 10 | Calibration curve for pre-training peak
discrimination. On the DRIAMS test-set, the usual
peak shuffling and peak discrimination is performed
(see §2.2). Predictions are then sorted and split into
equal frequency bins. Within those bins, the aver-
age predicted value is plotted against the actual frac-
tion of positive true labels in that bin. A calibrated
model requires predictions to be interpretable in a
frequentist manner, i.e. a sample with an output prob-
ability of 80% is expected to be positive 80% of the
times. Hence, the aforementioned plot is expected to
follow the diagonal. The plot shows that the model
is reasonably-well calibrated, with slight overconfi-
dence.
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Figure 11 | Max species prediction logit𝑾⊺
𝑠 ⋅ 𝒑[CLS] in

function of number of confidently "belonging" peaks
for a spectrum for DRIAMS test set spectra. A higher
max logit for the species prediction task corresponds
to a higher max output probability post-softmax, and,
hence, higher confidence. It is displayed that the
model is more confident in its prediction for spectra
with a higher number of confidently belonging peaks.
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