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Abstract

Molecular optimization is a very important practical problem
in drug discovery. Deep learning based methods has been
raised increasingly and provided useful solutions. However,
existing methods for 2D molecular optimization mainly adopt
the auto-regressive paradigm which reduce the diversity of
generated structural motifs due to the limitation during train-
ing. Recently, various diffusion model has achieve promis-
ing results in image transfer and editing, which motivate us
adapt it in a one-shot generation mode to molecular optimiza-
tion. In this paper, we present a conditional discrete diffusion
model by incorporating features of source molecules into the
modeling of target molecules via cross-attention module. Be-
sides, to address the challenge of controlling generation pro-
cess, we propose a new method that optimizing the molec-
ular with preserved structural motifs guidance with the as-
sistance of ChatGPT. We conduct a toy experiment and our
model achieves a promising results compared with other auto-
regressive based methods.

Introduction
The goal of 2D Molecular Optimization is to obtain target
molecules that not only have the desired properties but are
also similar to the source molecule. Work to data using deep
learning models has provided effective methods for this task
by directly generating desirable molecules with various gen-
erative models. Specifically, these methods have been pri-
marily categorized into two groups based on their genera-
tion mode: atom-based methods and fragments-based meth-
ods. Existing methods have been achieved promising per-
formance due to their auto-regressive generation paradigm
which focus only on generated part while predicting the cur-
rent state (Jin et al. 2018; Jin, Barzilay, and Jaakkola 2020,
2018; Fu, Xiao, and Sun 2020; You et al. 2018; Liu et al.
2018; Du et al. 2022; Zhang et al. 2023). Under a careful
training strategy, molecular can be optimized well by con-
straining next prediction state at every step. However, there
are still limitation to the complex training strategy, difficulty
in parallelization and the diversity of generated structural
motifs, which is usually find in fragment-based methods (Jin
et al. 2018; Jin, Barzilay, and Jaakkola 2020) that require
collecting vocabulary list in advance.
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Motivated by the wild success of applying diffusion mod-
els to image transfer and editing (Song et al. 2020; Ho, Jain,
and Abbeel 2020; Austin et al. 2021), the methods employ-
ing diffusion model on 3D molecular optimization task have
been raised increasingly (Xu et al. 2022; Hua et al. 2023).
But one important difference with 3D molecular optimiza-
tion is that 2D molecular lack detailed spatial coordinates
so that learning a good distribution of the target molecules
while keeping similarity conditional on the source molecules
is intractable. Specifically, too much diversity during one-
shot based generation process makes the similarity of molec-
ular before and after optimization hard to guarantee, which
is also a common challenge in one-shot generation (Liu
et al. 2021). Besides, Recent advancements in large lan-
guage models (LLMs), such as ChatGPT, have demonstrated
remarkable promise in various domains, including drug dis-
covery (OpenAI 2023; Liu et al. 2023b; Guo et al. 2023;
Li et al. 2023a; Qian et al. 2023). However, existing works
mainly focus on investigating the capabilities of conversa-
tional LLMs on chemical reaction and retrosynthesis. While
drug editing, a critical task in the drug discovery pipeline,
remains largely unexplored.

In this paper, we propose MolGuide, a conditional diffu-
sion model under novel guidance framework with the assis-
tance of ChatGPT for molecular optimization. Specifically,
we first design a graph condition mechanism that is adapted
to diffusion model (Vignac et al. 2022). Then we construct
potential structural motifs with ChatGPT to guide the gen-
eration process from multiple perspectives. Moreover, we
incorporate the Optimal Transport (OT) Distance between
molecular and structural motifs into energy-function to cor-
rect the generation process. Empirically, MolGuide, with a
one-shot based generation mode, achieves a promising re-
sults compared with methods in the auto-regressive genera-
tion manner.

The Proposed MolGuide
In this section, we present the MolGuide with pre-
served structural motifs guidance for molecular optimiza-
tion. Atoms and bonds in molecular can be naturally rep-
resented as nodes and edges in graphs G = (X,E), where
X ∈ Rn×a is the node feature matrix and E ∈ Rn×n×b

is the edge attributes tensor. Let n be the maximum num-
ber of nodes, a and b denote the number of possible types



of nodes and edges, respectively. Then we have xi ∈ Ra to
denote its one-hot encoding and Eij ∈ Rb to denote one-hot
encoding of each egde. In particular, we consider the vir-
tual edge as an additional node type. Given the molecular in
source domain, our goal is to generate a set of molecular in
target domain. Specifically, The generated target molecules
should have better properties while being structurally sim-
ilar to the source molecule. For a pair of data (MX ,MY )
denoted molecular in source domain and target domain re-
spectively, we construct their graph (GMX

,GMY
) The goal

of 2D Molecular Optimization is to obtain target molecules
that not only have the desired properties but are also simi-
lar to the source molecule. Motivated by the promising re-
sults from applying diffusion models to image transfer and
inpainting, we adapt such a one-shot generative model to
the 2D molecular optimization and design a new framework
with preserved structural motifs to guide the optimization
process. We will give a full overview of our model in the
following subsections.

Graph Conditional Diffusion Model for Molecular
Optimization
Discrete Denoising Diffusion Model for Graph Generation
(DiGress) (Vignac et al. 2022) are a variant of diffusion
models for 2D molecule data. DiGress diffuse separately
on each node and edge feature via transition probabilities
defined by the matrices Qt = (Qt

X , Qt
E), e.g., [Qt

X ]ij =
q(xt = j|xt−1 = i) and [Qt

E ]ij = q(at = j|at−1 = i).
At time t, form Gt = (Xt, Et) by sampling each node and
edge type from a categorical distribution which are formu-
lated by:

q(Gt|Gt−1) = (Xt−1Qt
X , Et−1Qt

E)

q(Gt|G) = (XQ̄t
X , EQ̄t

E)
(1)

for Q̄t
X = Q1

X ...Qt
X and Q̄t

E = Q1
E ...Q

t
E . To generate

samples, the forward process is reversed using a Markov
chain:

q(Gt−1|Gt,G0) ∝ Gt−1(Qt)⊤ ⊙ G0Q̄t−1 (2)

The predicted clean graph G0 is parameterized by a
denoising neural network ϵθ(Gt, t), and is trained using
a cross-entropy loss l between the predicted probabilities
p̂0G = (p̂0X , p̂0E) for each node and edge and the true graph
G, with their contributions weighed by a hyperparameter
λ ∈ R+:

l(p̂0G,G) =
n∑

i=1

cross-entropy(p̂0Xi
, Xi)

+ λ
∑

1≤i,j≤n

cross-entropy(p̂0Ei
, Ei)

(3)

DiGress show that the distribution of generated samples
p(G0) is exchangeable to any permutation if the noise pre-
diction network is permutation equivariant and the transition
probabilities is equivariant to joint permutations of p̂θ(G)
and Gt. Our work is based on their implementation, but we
adapted it to work on 2D molecular optimization.

To better guide the generation process of target molec-
ular conditional on the structural information of the
source molecular, we carefully design a conditional mecha-
nism (Rombach et al. 2022) that matching the target molec-
ular with the source molecular by incorporating the GMX

into the denoising neural network ϵθ(Gt
MY

, t,GMX
). More

specifically, we first employ a pre-trained graph encoder
τMX

(·) that project GMX
to the intermediate representation

τMX
(GMX

). Then we map it to the intermediate layers of
the graph transformer network via a Node & Edge cross-
attention layer implementing: CrossAttention(Q,K, V ) =

softmax(QK⊤
√
d

· V ), with:

Q = W
(i)
Q · fi(Gt

MY
),

K = W
(i)
K · τMX

(GMX
),

V = W
(i)
V · τMX

(GMX
)

(4)

where fi(Gt
MY

) denote a intermediate representa-
tion of the graph transformer implementing ϵθ and
W

(i)
Q ,W

(i)
K ,W

(i)
V are learnable projection matrices. After

aligning the feature between Nodes & Nodes and Edges &
Edges in two domains, we can easily match the their relation
between two graphs.

Molecular Optimization with Preserved Structural
Motifs (PSM)
We notice that there are many structural similarities be-
tween the target molecule and the source molecule. In-
spired by the prompt learning using in natural language pro-
cess and image generation (Liu et al. 2023a; Li and Liang
2021; Wang et al. 2023; Zhou et al. 2022), the molecu-
lar optimization can be view as a generation process with
some fixed structural motifs as prompt. For a pair of data
(MX ,MY ), we aim to optimize the Eq. 3 with preserved
common structural motifs between the molecules MX and
MY at each time-step t. Thanks to the method proposed by
(Jin, Barzilay, and Jaakkola 2020), we can easily decompos-
ing a molecule M into disconnected fragments by breaking
all the bridge bonds that will not violate chemical validity.
Specifically, we extract two motifs set SMX = {SMX

i }KMX
i=1

and SMY = {SMY
i }KMY

i=1 from the source molecule and the
target molecule during training, where KMX

and KMY
in-

dicate the number of structural motifs belonging to them re-
spectively. Then we filter the common structural motifs from
two set:

S = SMX ∩ SMY (5)
where S = {Si}Ki=1 denote the common structural motifs

set having K motifs and we define a set nL = {ni}i=L
i=1

that contains all L nodes in the common substructure motifs
without repetition. Therefore, we can construct a subgraph
GL = (XL, EL) with nodes set nL and mask the input graph
Gt = (Xt, Et) with this subgraph at each time step t:

Gt
PSM = (Xt

PSM, Et
PSM) (6)

Xt
PSM = MASKX ⊙XL + (1− MASKX)⊙Xt

Et
PSM = MASKE ⊙ EL + (1− MASKE)⊙ Et

(7)
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You are an expert in the field of molecular chemistry.

…Your task is to select which structural motifs in the candidate list 
should be preserved according your experienced chemical knowledge…

The source molecule SMILES: Cc1ccccc1CS(=O)CCCc1ccccc1
Its contained structural motifs: C1=CC=[CH:1]C=C1, S, C[CH3:1]…
Preserved structural motifs: C1=CC=[CH:1]C=C1, C[CH3:1], O=[S:1]…

The source molecule SMILES: CC(=O)NCCNC(=O)c1cnn(-c2ccc(C)c(Cl)c2)c1C1CC1
Its contained structural motifs: C1=CC=[CH:1]C=C1, C1C[CH2:1]1, C[CH3:1]…
Preserved structural motifs:

3×

…

C1=CC=[CH:1]C=C1
C1=NNC=[CH:1]1
C[CH3:1] 
C[CH3:1]

N[CH3:1]
O=[CH2:1]

C[NH2:1]
Cl[CH3:1]

ChatME

Figure 1: The framework of proposed MolGuide for molecular optimization with preserved structural guidance.

where MASKX ∈ Rn·a and MASKE ∈ Rn·n·b are masks
indicating the nL first nodes (Lugmayr et al. 2022). Then we
can replace Gt in Eq. 3 with Gt

PSM and train a preserved struc-
tural motifs condition denoising neural network ϵθ(Gt

PSM, t).
During test, the most chanllengable obstacle is obtaining a
set of common structural motifs with only source molecules
in test data. One possible way is to manually pick out all
appropriate common structural motifs using expert knowl-
edge and experience. However, when test data is enormous,
it becomes nearly intractable and not conducive to indus-
trial applications. Fortunately, with the capabilities and ex-
pert knowledge of large language models (LLMs), such as
ChatGPT, on molecular analysis, we can obtain the potential
common structural motifs of source molecular by resorting
to ChatGPT.

During generation process, we carefully design a
ChatGPT for Motifs Extraction (ChatME) module aims
to generate potential common structural motifs while given
a source molecule and its contained all structural motifs
as candidate list. As Fig 1 shows, we first define the role
ChatGPT plays, such as a chemical expert, and the descrip-
tion of current task. Then, we construct the question prompt
template P consisting of several examples. Based on these,
ChatME will return a set SChatME denote the potential com-
mon structural motifs in candidate list:

SChatME = ChatME(P,MX , SMX
) (8)

where SChatME can be view as preserved structural mo-
tifs that considers expert knowledge and the trade-off be-
tween similarity and optimization properties. After that, we
get the nodes set nChatME

L and build the subgraph GChatME
L =

(XChatME
L , EChatME

L ). So far, we can update the Xt and Et

with the similar way above to mask the generated graph at
each reverse iteration step after sampling Gt.

Molecular-Motifs Aligned Energy-Guidance
Given two discrete probability distribution P and Q on space
X ∈ Rd : P =

∑n
i=1 θiδhi

, and Q =
∑m

j=1 βjδuj
,

where hi and uj are two points in the arbitrary same space
X . θ ∈ Σn and β ∈ Σm, the simplex of Rn and Rm,
denote two probability values of the discrete states satis-
fying

∑n
i=1 θi = 1 and

∑m
j=1 βi = 1. δh refers to a

point mass located at coordinate h ∈ Rd. To measure such
two discrete distributions, we formulate the OT distance be-
tween P and Q as the optimization problem: OT(P,Q) =
minT∈Π(θ,β)

∑
i,j tijcij , with T1m = θ, T⊤1n = β. 1m is

the m dimensional vector of ones. cij = c(hi, uj) ≥ 0 is the
transport cost defined by an arbitrary cost c(·). The optimal
transport plan T is often trained by minimizing the OT cost
with the iterative Sinkhorn algorithm (Cuturi 2013; Liu et al.
2023c; Li et al. 2023b).

Now we present the details of our proposed module MOT
guidance, which aligns Molecule atoms & bonds in and
common structural Motifs under Optimal Transport frame-
work (MOT) for energy-guided molecular optimization. As
shown in Fig. 1, MOT consists of four components, the
atoms&edges P = (PX ,PE) set of the target molecular,
the preserved structural motifs Q = (QX ,QE) set of the
source molecular. and the energy-guidance with OT distance
between P and Q.

Time-Independent P set over node & edge embeddings
For a target molecular graph G = (X,E), MOT first ap-
ply noise to it at time-step t, and feed the noised graph
Gt to a graph transformer network gϕ(Gt

MY
, t) to obtain

its nodes features HX,t = {hX,t
i }ni=1 and edge features

HE,t = {hE,t
j }n2

j=1, where hX,t
i ∈ Rd denotes i-th node

embedding, hE,t
j ∈ Rd denotes j-th edge embedding and

d is the embedding dimension. For convenience, MOT view
each node and edge equally that the weight θX = 1

n is a uni-
form distribution over n nodes and the weight θE = 1

n2 is
a uniform distribution over n2 edges. After giving the node
embedding matrix HX,t, edge embedding matrix HE,t and
their weights θX and θE respectively, MOT obtains the time-
independent discrete distribution Pt = (PX,t,PE,t) of Gt



Algorithm 1: Training MolGuide.

Input: A pair of graph (GMX ,GMY ) and GMY = (X,E)
Get common structural motifs S and construct subgraph GPSM
Sample t ∼ U(1, ..., T )
Sample Gt

MY
∼ XQ̄t

X × EQ̄t
E

Get new Gt
MY

= MASK(Gt
MY

,GPSM) with Eq. (7)
Encode graph condition τ(GMX )
(p̂0X , p̂0E)← ϵθ(GtMY

, τ(GMX ), t)

optimizer.step (lCE(p̂
0
X , X) + λlCE(p̂

0
E , E))

Algorithm 2: Training MOT.

Input: A pair of graph (GMX ,GMY ) and GMY = (X,E)
Get common structural motifs S.
Sample t ∼ U(1, ..., T )
Sample GtMX

∼ XQ̄t
X × EQ̄t

E

optimizer.step (TEOTt(ϕ,GtMX
, S, t))

over the nodes & edges set at time-step t.

Q set over motifs embeddings In addition to the set P,
MOT also represents the set of the structural motifs in
a source molecular graph as subgraph-level embeddings.
Specifically, MOT first feed the graph to a pre-trained graph
encoder to get its node embeddings V X = {vXi }ni=1 and
edge embedding V E = {vEj }n

2

j=1, then pooling correspond-
ing node and edge embeddings in each structural motifs to
get motif embeddings as follow:

U = {Uk}Kk=1, Uk = concat[Pooling(V X
Sk
),

Pooling(V E
Sk
)], S = {Sk}Kk=1

(9)

where K denotes the number of motifs in a graph. V X
Sk

and V E
Sk

are two sets of node embeddings and edge embed-
dings in the Sk motif, respectively. We choose sum(·) as
Pooling(·) operation and define the weight β = 1

K in Q is
a uniform distribution over K motifs. After giving the mo-
tifs embedding matrix U and its weights β, MOT obtains the
discrete distribution Q of G over the motifs set.

Energy-Guidance with Time-Independent OT Distance
For a molecular graph G and a set of potential preserved
structural motifs S, the two discrete distributions P and Q
can be viewed as semantic representations from two dif-
ferent domains. MOT bridges the domain semantic gap by
minimizing the OT distance of P = (PX ,PE) and Q,
e.g.,OT(P,Q). Furthermore, for better aligning molecu-
lar generation and potential structural motifs, we develop a
Time-independent Energy-function based on OT Distance
(TEOT):

TEOTt(ϕ,Gt
MY

, SMX
, t) = OT(Pt,Q) (10)

where t is he current time-step and gϕ(·) can be parame-
terized by equivariant model graph transformer.

Inspired by (Ho and Salimans 2022; Yu et al. 2023;
Bao et al. 2022), now we describe preserved structural
motifs-guided diffusion model, which guides the optimized

Algorithm 3: Sampling from MolGuide.
Input: A source graph GMX

Get potential common structural motifs SChatME with Eq. (8) and
construct subgraph GChatME

L with L nodes.
Sample GT ∼ qX(n)× qE(n)
Encode graph condition τ(GMX )
for t = T to 1 do

(p̂0X , p̂0E)← ϵθ(Gt, τ(GMX ), t)
pϕ(Gt, SChatME) ∝ exp (−λ∇GtTEOTt(ϕ,Gt, SChatME, t))
Sample Gt−1 ∼ pθ(Gt−1|Gt)pϕ(Gt, SChatME)
Get new Gt = MASK(Gt,GChatME) with Eq. (7)

end for

molecules of Eq. 2 towards desired potential structural mo-
tifs SMX

by leveraging a time-independent energy-function
based on OT Distance TEOTt(ϕ,Gt

MY
, S, t):

pϕ(Gt, SMX
) ∝ exp (−λ∇GtTEOTt(ϕ,Gt, SChatME, t)) (11)

Gt−1 ∼ pθ(Gt−1|Gt)pϕ(Gt, SChatME) (12)

Besides, we can also introduce the molecular fingerprint of
the source molecule as a global feature into the denoising
neural network ϵ(θ,Gt, c)v for option strategy. Then we can
easily train a conditional diffusion model with the inherent
structural information.

Training and sampling procedures Given a pair of graph
data (GMX

,GMY
) denoting the source molecular and the

target molecular, respectively. We first extract the common
structural motifs between molecules in two domain. Then
obtain a noised graph with preserved structural motifs and
introduce the condition mechanism via encoding the source
molecular into τ(GMX

). After that, all parameters in Mol-
Guide are optimized according to Eq. (3). We summarize
the training algorithm of MolGuide at algorithm. 1. Besides,
similarly, we train the guidance module given Given a pair
of graph data (GMX

,GMY
) denoting the source molecular

and the target molecular, respectively. After obtaining the
common structural motifs S and noised graph GMY

, MOT
represents them as motif embeddings and node & edge em-
beddings. Parameters of graph transformer model in MOT is
optimized under OT framework according to Eq. (10).. We
summarize the training algorithm of MOT at algorithm 2.
After training the conditional discrete diffusion model and
its guidance module, we can sample from MolGuide with
algorithm. 3.

Experiments
We follow the experimental design by (Jin et al. 2018) and
evaluate our model on their molecular optimization task. At
test time, the molecular similarity between MX and output
MY must be over a threshold sim(MX ,MY ) ≥ δ.

Dataset We train and evaluate our model on Drug-
likeness (QED) task. The QED score measures a com-
pound’s drug-likenes. In this task, the model aims to op-
timize molecules with QED scores from the lower range
[0.7, 0.8] into the higher range [0.9, 1.0] and the similarity
constraint is sim(MX ,MY ) ≥ δ and δ is 0.4 here. The
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Figure 2: The visualization of generation process with preserved structural motifs.

test set contains 800 molecules. Besides, we train a graph
auto-encoder using the ZINC250K dataset, which has 250K
drug-like molecules.All datasets above have the maximum
number of atoms is 38 and include 9 atom types and 3 edge
type.

Baselines We compare our approach with the baselines
including MMPN (Dalke, Hert, and Kramer 2018), the
method learning rules for generating “molecular para-
phrases”; GCPN (You et al. 2018), a reinforcement learning
based model; CG-VAE (Liu et al. 2018), a graph-based VAE
and translation based method JT-VAE, sSeq2Seq, VJTNN,
AtomG2G and HierG2G (Jin et al. 2018; Jin, Barzilay, and
Jaakkola 2020, 2018). Except for MMPN, all other baselines
follow auto-regressive generation paradigms for 2D molec-
ular optimization.

Table 1: Optimization performance on QED task. The best
results are highlighted.

QED
Method Generation Mode Success Diversity Novelty
MMPA Rules-based 32.9% 0.236 99.9%

CG-VAE Atom-based 4.8% - -
JT-VAE Fragment-based 8.8% - -
GCPN Atom-based 9.4% 0.216 100%
VSeq2Seq Fragment-based 58.5% 0.331 99.6%
VJTNN Fragment-based 59.9% 0.373 98.3%
AtomG2G Atom-based 73.6% 0.421 -
HierG2G Fragment-based 76.9% 0.477 -

MolGuide One-shot 75.4% 0.510 98.8%

Training Details We set the training hyper-parameters of
discrete diffusion model to be the same as DiGress (Vignac
et al. 2022) and train a graph auto-encoder with the same
architecture of unconditional graph transformer in DiGress.
During training with preserved structural motifs, to enhance

the generalization of the source-to-target molecule mapping,
we randomly select 70% of the structural motifs in the com-
mon structural motifs of each pair of molecules and repeat
3 times. Besides, we train the graph transformer in MOT
module with the same architecture of unconditional graph
transformer in DiGress.

We present translation Accuracy, Diversity and Nov-
elty as evaluation metric in Table 1. From the results, we
can find that our proposed method consistently outper-
forms a serious of Atom-based and Fragment-based meth-
ods, all of which follow the auto-regressive generation
paradigm (Dalke, Hert, and Kramer 2018; You et al. 2018;
Liu et al. 2018; Jin et al. 2018; Jin, Barzilay, and Jaakkola
2018, 2020). Moreover, we visualize the generation pro-
cess with preserved structural motifs as shown in Fig. 2.
It is worth noting that there exist totally different reserve
processes corresponding to a same source molecule with
most preserved structural motifes and finally our purposed
method can still generate two different target molecules.

Conclusion and Limitation
In this paper, we have proposed MolGuide, a one-shot gen-
erative model for molecular optimization, and carefully de-
sign a guidance framework aligning structural motifs and
generated molecules by preserving structural motifs with
the assistance of ChatGPT and energy-guidance under OT
Distance. However, the controllability of one-shot genera-
tive model still has a crucial limitation in molecular opti-
mization. For further exploration, we will pay more atten-
tion to the methods having a good ability of control dur-
ing generation process. Solving 2D molecule optimization
or even graph generation with one-shot generative model has
always been our primary research focus. Thus, We hope one-
shot generative model, including our purposed method Mol-
Guide, can bring a novel insight of molecular optimization
to community.
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