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Abstract

Prediction of ligand binding sites of proteins is a fundamental
and important task for understanding the function of proteins
and screening potential drugs. Most existing methods require
experimentally determined protein holo-structures as input.
However, such structures can be unavailable on novel or less-
studied proteins. To tackle this limitation, we propose LaMP-
Site, which only takes protein sequences and ligand molecular
graphs as input for ligand binding site predictions. The protein
sequences are used to retrieve residue-level embeddings and
contact maps from the pre-trained ESM-2 protein language
model. The ligand molecular graphs are fed into a graph neural
network to compute atom-level embeddings. Then we compute
and update the protein-ligand interaction embedding based on
the protein residue-level embeddings and ligand atom-level
embeddings, and the geometric constraints in the inferred pro-
tein contact map and ligand distance map. A final pooling on
protein-ligand interaction embedding would indicate which
residues belong to the binding sites. Without any 3D coordi-
nate information of proteins, our proposed model achieves
competitive performance compared to baseline methods that
require 3D protein structures when predicting binding sites.
Given that less than 50% of proteins have reliable structure
information in the current stage, LaMPSite will provide new
opportunities for drug discovery.

Introduction
Identifying ligand binding sites of proteins is an essential
step in the pipeline of drug discovery (Anderson 2003).
The binding site serves as a key interface where proteins
engage in fundamental cellular processes, making it an at-
tractive target for drug molecules. To reduce the time and
expense of binding site identification for protein-ligand com-
plexes, computational methods have been proposed and
achieved promising performance (Yuan, Pei, and Lai 2013;
Macari, Toti, and Polticelli 2019; Dhakal et al. 2022). Non-
machine learning computational methods include geometry-
based ones (Laskowski 1995; Hendlich, Rippmann, and Bar-
nickel 1997; Huang and Schroeder 2006; Xie and Bourne
2007; Weisel, Proschak, and Schneider 2007; Le Guilloux,
Schmidtke, and Tuffery 2009; Xie, Xie, and Bourne 2009;
Sael and Kihara 2012) that identify and rank hollow spaces
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on protein surfaces, probe-based ones (Laurie and Jackson
2005; Amari et al. 2006; Ghersi and Sanchez 2009; Her-
nandez, Ghersi, and Sanchez 2009) that strategically place
probes on protein surfaces to compute energies for identi-
fying binding locations, and template-based ones (Skolnick,
Kihara, and Zhang 2004; Wass, Kelley, and Sternberg 2010;
Yang, Roy, and Zhang 2013) that query protein templates
in large databases with annotated binding sites. Machine
learning methods have further advanced the field, leveraging
various techniques, including classic machine learning algo-
rithms (Krivák and Hoksza 2015, 2018) and deep learning
models (Dhakal et al. 2022). Notably, 3D-convolutional neu-
ral networks have been widely used by treating the task of
binding site identification as a segmentation problem within
3D space (Jiménez et al. 2017; Simonovsky and Meyers 2020;
Stepniewska-Dziubinska, Zielenkiewicz, and Siedlecki 2020;
Mylonas, Axenopoulos, and Daras 2021; Aggarwal et al.
2021; Kandel, Tayara, and Chong 2021; Yan et al. 2022).

Despite the progress in ligand binding site prediction, ex-
isting methods predominantly depend on the availability of
experimentally determined ligand-bound (holo) protein struc-
tures, which pose certain limitations. Firstly, these methods
encounter challenges when dealing with newly sequenced
proteins lacking experimental structural data, hindering their
applicability to a broader range of protein targets. Secondly,
for proteins with only ligand-free (apo) structures avail-
able, detecting cryptic binding sites—those whose shapes
may change upon ligand binding—can be a formidable
task (Cimermancic et al. 2016). Recently, there have been
breakthroughs in predicting highly accurate protein struc-
tures, which provide extra sources of structural information
besides experimental techniques (Jumper et al. 2021; Baek
et al. 2021; Wu et al. 2022; Lin et al. 2023). A growing num-
ber of works have applied binding site prediction methods
on these computationally achieved protein structures (Akdel
et al. 2022; Jakubec et al. 2022; Díaz-Rovira et al. 2023).
However, due to the limited portion of predicted structures
with high confidence and the ignorance of the dynamic nature
of binding sites, experimentally determined structures still
provide better and easier situations for binding site identifica-
tion and docking (Karelina, Noh, and Dror 2023).

To address the aforementioned limitations, we have a two-
fold objective. Firstly, we seek to leverage the computation-
ally predicted protein information to expand our capability to



Figure 1: Illustration of LaMPSite pipeline. The overall pipeline involves taking a protein sequence and a 2D ligand molecular
graph as input. Initially, the pre-trained ESM-2 model computes protein residue embeddings hp and a contact map Cp.
Subsequently, ligand atom embeddings hl are acquired through a GNN and are then combined with residue embeddings
to calculate the interaction embedding z for the protein-ligand pair. z is refined in the interaction module using geometric
constraints, including Cp and the ligand distance map Dl from the initialized 3D conformer. Then the interaction embeddings
are aggregated, followed by pooling to generate scores s for each residue. Finally, residues are clustered based on the protein
contact map, and these clusters are ranked to determine the binding site.

predict binding sites on a broader set of proteins, including
those lacking experimental structural data. Secondly, we aim
to reduce the heavy dependence on rigid 3D protein structures
and instead incorporate the dynamic nature of binding sites.
To achieve these goals, we propose Large Language Model-
Powered Ligand Binding Site Predictor (LaMPSite), which
capitalizes on the protein information computed from pro-
tein sequence based on the recent ESM-2 pre-trained protein
large language model (LLM) (Lin et al. 2023). The computed
protein information includes residue-level embeddings that
implicitly capture the 3D structure of a protein. These embed-
dings are integrated with atom-level embeddings of ligands
obtained from a graph neural network to compute the protein-
ligand interaction embedding. We also utilize the predicted
protein contact map from ESM-2 and the distance map of
ligand conformer as geometric constraints to further update
the protein-ligand interaction embedding to learn more real-
istic binding site structures. We then apply mean pooling to
the interaction embedding, enabling us to quantify the score
between each protein residue and the entire ligand, where a
higher score indicates a greater likelihood that the residue is
part of a binding site. Finally, we leverage the protein contact
map information to guide the clustering of filtered residues,
ultimately yielding our predictions for binding sites.

We evaluate our LaMPSite against several baselines for
binding site prediction on a benchmark dataset. Notably, our
method demonstrates competitive performance without 3D
protein coordinate information, in contrast to baseline meth-
ods that heavily rely on 3D protein structures. The results
highlight that LaMPSite provides a novel and promising di-
rection for binding site prediction, driven by the capabilities
of protein LLMs. Our main contributions are as follows:

• We introduce LaMPSite, a novel ligand binding site predic-
tion method powered by a protein LLM. LaMPSite relies
solely on protein sequences and ligand molecular graphs
as initial input and eliminates the need for 3D protein

coordinates throughout the prediction process.
• When compared to baseline methods that utilize experi-

mental 3D protein holo-structures, our model demonstrates
competitive performance on a benchmark dataset for bind-
ing site prediction.

Method
The overall architecture of LaMPSite is depicted in Figure 1.
We will describe the relevant modules in this section. Addi-
tional details not covered here are included in the Appendix.

Involved Representations
Protein. Our model only takes protein sequences as the
initial input to compute protein representations. Leverag-
ing a pre-trained ESM-2 protein LLM, we generate protein
residue embeddings hp ∈ Rnp×d from the provided protein
sequence, where np is the number of residues in the sequence
and d is the hidden dimension size. These embeddings are di-
rectly derived from ESM-2 and have demonstrated the emer-
gence of 3D structural information inside (Lin et al. 2023).
Additionally, we make use of the unsupervised contact predic-
tion results obtained from ESM-2 to generate protein contact
maps Cp ∈ Rnp×np , serving as a low-resolution estimate of
the protein structural information.

Ligand. The 2D ligand molecular graphs excluding hydro-
gen atoms are initially provided to be fed into a Graph Neural
Network (Zhang, Liu, and Xie 2023) to learn atom-level
embeddings hl ∈ Rnl×d, where nl is the number of ligand
atoms. Besides, we use RDKit (Landrum 2013) to initialize a
3D conformer for each ligand to compute the corresponding
ligand distance map Dl ∈ Rnl×nl .

Protein-ligand pair. Based on the protein residue embed-
dings hp and ligand atom embeddings hl, we compute the
interaction embedding z ∈ Rnp×nl×d for the protein-ligand



pair, which models the interactions between protein residues
and ligand atoms. For i-th protein residue and j-th ligand
atom, we define zij = hp

i ⊙ hl
j . This information inherently

reflects the residues with stronger interactions with ligand
atoms, thereby identifying residues within binding sites.

Interaction Module
While the aforementioned z can be directly employed to pre-
dict binding site residues, it’s worth noting that the 3D struc-
tural information that emerged from ESM-2 may not be ideal
holo-structures for detecting binding sites. Therefore, we
want to incorporate the dynamic nature of binding sites into
our model, which involves introducing further modifications
to z. To accomplish this, we use the trigonometry module
in (Lu et al. 2022), which is a variant of the Evoformer block
in (Jumper et al. 2021), as our interaction module to update
z based on the geometric constraints in protein contact map
Cp and ligand distance map Dl.

Pooling Module
After having the updated interaction embedding z′, we sum it
together with the original z and perform a linear transforma-
tion to reduce the hidden dimension size to 1. The resulting
final interaction embedding zfinal ∈ Rnp×nl×1 contains
scores that indicate the likelihood of interaction between
residues and ligand atoms. To compute a score s for each
residue, representing the interaction likelihood between the
entire ligand and the residue, we apply mean pooling specifi-
cally over the dimension related to ligand atoms on zfinal.
For the i-th residue, si =

∑
j z

final
ij , where j represents the

j-th ligand atom. A higher score indicates a stronger interac-
tion between a residue and a ligand, concurrently signifying
that the residue likely constitutes part of the binding site.

Clustering and Ranking Module
For the identification of binding sites on the test set, we first
normalize the predicted scores s to the range of 0 to 1. Fol-
lowing this, we apply a threshold v to filter out residues with
scores less than v. Subsequently, we cluster the remaining
residues using the single linkage algorithm (Müllner 2011),
utilizing the protein contact map generated by ESM-2. The
clusters are finally ranked based on the squared sum of the
associated residue scores. An illustration of these steps can
be found in the Appendix.

Experiments
Datasets. For the training of our model, we use the scPDB
v.2017 database (Desaphy et al. 2015), which is a widely
used dataset for binding site identification. For the evaluation
of our model, we use COACH420 (Krivák and Hoksza 2018),
which is a data set with proteins that contain a mix of drug
targets and natural ligands. More details of the datasets are
provided in the Appendix.

Experimental Settings. For the training process, our
model is optimized to minimize the binary cross-entropy

Figure 2: Models’ performance on COACH420. (a) Success
rate plot for different DCA thresholds for LaMPSite. (b)
Comparison of identification performance (Top-n success
rate) in terms of DCA.

loss between the predicted residue scores s and the ground-
truth labels. An early-stopping strategy is adopted to decide
the best epoch based on the validation loss.

For our evaluation criteria, we use the DCA criterion,
which stands for the distance from the center of the pre-
dicted binding site to the closest ligand heavy atom. DCA
criterion evaluates the model’s ability to find the location of
the binding site. We use the ground-truth protein structure
to calculate the predicted binding site center by averaging
the coordinates of all alpha-carbons in our predicted binding
site residues. Predictions with DCAs < 4Å are considered
successful. Specifically, we evaluate the model’s ranking ca-
pability by measuring the success rates when considering the
top n-ranked pockets, where n is the number of annotated
binding pockets for a given protein. We calculate the success
rates for each fold in the 10-fold cross-validation, and the
final result is obtained by averaging these success rates. More
details of the implementations can be found in the Appendix.

Baselines. We compare our model with the following base-
lines: Fpocket (Le Guilloux, Schmidtke, and Tuffery 2009),
Deepsite (Jiménez et al. 2017), Kalasanty (Stepniewska-
Dziubinska, Zielenkiewicz, and Siedlecki 2020), Deep-
Pocket (Aggarwal et al. 2021), P2Rank (Krivák and Hok-
sza 2018). The results of the baselines are from (Aggarwal
et al. 2021), which are evaluated on the same test set as ours.
Fpocket is a geometry-based method, Deepsite, Kalasanty,
and DeepPocket are 3D-CNN-based methods, and P2Rank
is a random forest-based method. All baselines require the
experimental protein holo-structures as input.

Results
To evaluate the binding site identification performance of
LaMPSite, we first plot the relationship between DCA suc-
cess rates and distance thresholds in Figure 2(a). LaMPSite re-
turns an average DCA success rate of 66.02% at 4Å threshold.
Comparing this result with baseline methods, we observe that
LaMPSite significantly outperforms Fpocket, Deepsite, and
Kalasanty, while trailing DeepPocket (67.96%) and P2Rank
(68.24%), as illustrated in Figure 2(b). These results demon-
strate that LaMPSite, which does not rely on 3D protein
coordinate information for binding site prediction, effectively
leverages the 3D structural information that emerged in the
pre-trained ESM-2 model. Furthermore, it’s noteworthy that



Figure 3: Predictions and visualizations of binding sites in
example complexes. The binding site residues predicted by
LaMPSite are highlighted in orange on the ground-truth 3D
complex structures. The respective DCAs are also included.

LaMPSite consistently provides at least one binding site pre-
diction for each protein in COACH420, a behavior similar to
Fpocket, DeepPocket, and P2Rank. In contrast, Deepsite fails
for one protein, and Kalasanty fails for 12 proteins. This indi-
cates the accuracy and robustness of LaMPSite as a binding
site prediction method. In terms of inference time, LaMPSite
exhibits an impressive performance, requiring only approx-
imately 0.2s per query protein. This efficiency highlights
the potential for LaMPSite to be employed in virtual ligand
screening applications.

We also explore how LaMPSite performs when replacing
the protein contact maps with the corresponding experimen-
tal protein holo-structures. We denote the resulting model
as LaMPSite (holo). As depicted in Figure 2(b), LaMPSite
(holo) achieves a success rate of 67.96%, which is compara-
ble to DeepPocket and P2Rank. This is expected, given that
protein contact maps contain only low-resolution geometric
information compared to experimentally determined protein
structures, and the contact maps generated from ESM-2 are
derived from unsupervised training on a limited set of 20 pro-
teins, offering only a coarse estimation of protein structures.

Visualizations of Predicted Residues. In Figure 3, we
show examples (PDB IDs: 1O86, 1XVT, 2G25, 2GWH)
illustrating our predicted binding site residues. For 1O86,
LaMPSite accurately identifies the correct binding site, which
manifests as hollow spaces within the protein, as depicted in
Figure 3(a). In the case of 1XVT, a protein with two domains
connected by linkers, LaMPSite successfully identifies the
binding site within the larger domain, situated in the upper
right part of Figure 3(b). Regarding 2G25 that has two bind-

Table 1: Results of ablation study. The Top-n success rate
(SR) results are compared.

Ablation Top-n SR

LaMPSite 66.02
w/o clustering 65.18
w/o merging z & z′ 63.50
w/o interaction module 62.40

ing sites, LaMPSite can successfully detect all of them as
shown in Figure 3(c). For 2GWH that binds to two different
ligands on different binding sites, LaMPSite correctly pre-
dicts the binding site based on the corresponding ligand as
input individually, which demonstrates the ability of LaMP-
Site to discriminate binding pockets on the same protein
based on the ligand.

Ablation Study. To evaluate the effectiveness of the mod-
ules in LaMPSite, we conduct an ablation study by creating
three LaMPSite variants: one without the clustering step dur-
ing inference, another without the merging of interaction
embeddings z and z′, and a third without the interaction
module. The results are presented in Table 1, revealing that
the original LaMPSite outperforms all ablated variants. This
observation demonstrates the significance of incorporating
all these modules into the model for optimal performance.

Limitations. While our model has demonstrated good per-
formance, it is important to acknowledge several limitations.
First, our model typically generates only one binding site
candidate per prediction in most cases (a total of 383 can-
didates for 359 pairs in COACH420), constrained by the
current filtering and clustering process during inference. Sec-
ond, because our model takes a single chain as input, its
performance in multi-chain scenarios may be limited, as it
doesn’t account for interactions between chains. Third, due
to memory constraints, our model is not trained on relatively
long protein sequences (length > 850), potentially impacting
its performance. Lastly, the evaluation of our model could be
expanded to encompass additional datasets and more chal-
lenging scenarios, such as the detection of cryptic binding
sites in apo-structures.

Conclusion
In this work, we introduce LaMPSite, a ligand binding site
prediction model empowered by a pre-trained protein LLM.
By relying solely on protein sequences and ligand molecu-
lar graphs as initial input, LaMPSite eliminates the need for
3D protein coordinates during the prediction process, pre-
senting a novel approach to ligand binding site detection
model design. LaMPSite demonstrates competitive perfor-
mance when compared to baselines that rely on experimental
3D protein holo-structures on benchmark dataset. Future di-
rections for research include optimizing memory utilization,
assessing scenarios involving multi-chain proteins, evaluat-
ing the model’s ability to detect cryptic binding sites, and
integrating computationally predicted protein structures into
the model.
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Appendix
Details of Datasetss
The scPDB v.2017 database consists of 17594 binding sites,
corresponding to 16612 PDB structures and 5540 UniProt
IDs. To ensure a rigorous evaluation process, we adhere
to the same data split strategy employed in (Stepniewska-
Dziubinska, Zielenkiewicz, and Siedlecki 2020; Aggarwal
et al. 2021), which prevents any data leakage, and utilizes
a 10-fold cross-validation. Multi-chain 3D complexes are
split into single chains with their own interacting ligands,
and each split pair is treated as a protein-ligand pair. To re-
duce memory usage, we remove protein sequences longer
than 850 amino acids. The ground-truth label of each residue
is defined as whether the distance between the residue and
the nearest ligand atom is < 8 Å. For COACH420, we use
the version referenced in (Aggarwal et al. 2021), which ex-
cludes ligands that were improperly prepared or failed to be
parsed, resulting in 291 protein structures and 359 ligands.
To prevent any potential data leakage, we follow (Aggarwal
et al. 2021) to exclude structures in scPDB that have either
sequence identity > 50% or ligand similarity > 0.9 and se-
quence identity > 30% to any of the structures in COACH420.
Consequently, our processed scPDB dataset contains 16270
protein-ligand pairs. We use the publicly available data for
scPDB1 and COACH4202. For the data split of scPDB and
the screened data entries of COACH420, we use the source3

provided by (Aggarwal et al. 2021).

Implementation Details
In LaMPSite, we use the ESM-2-650M model with 33 lay-
ers (Lin et al. 2023) for generating protein representations.
The residue embeddings from the last layer are utilized. The
Automatic Mixed Precision package (torch.amp) in Pytorch
is used to enable mixed precision of our model for reducing
memory consumption while maintaining accuracy. We use
NGLview (Nguyen, Case, and Rose 2018) to generate the
visualizations of our predicted residues in Figure 3. All of
the experiments are done on an NVIDIA Tesla V100 GPU
(32 GB). In Table 2, we list the typical hyperparameters used
in our experiments.

Table 2: List of hyperparameters.

Hyperparameters Value

Batch size 8
Hidden dim. in GNN 128
Hidden dim. in interaction module 32
Learning rate 5e-4
Number of GNN layers 4
Number of interaction modules 2
Max. Number of Epochs 30
Patience for early stopping 4
Dropout rate in interaction module 0.25
Threshold v 0.63

1http://bioinfo-pharma.u-strasbg.fr/scPDB/
2https://github.com/rdk/p2rank-datasets
3https://github.com/devalab/DeepPocket



Figure 4: Illustration of the clustering and ranking steps in
LaMPSite.

Details of the Clustering and Ranking Module
In Figure 4, we illustrate the detailed steps in the Clustering
and Ranking Module of LaMPSite.


