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Abstract

In the era of ChatGPT, we hear the words Language Models,
Large Language Models, Foundation Models everywhere.
This trend has already arrived to genomics, existing now
several DNA foundation models that can be easily adapted
to solve a diverse set of prediction tasks. While it is clear
now that supervised learning and Deep Learning strongly im-
pacted the field in the past years and expanded significantly
our in-silico capabilities, it looks like we are entering a new
paradigm shift with such language models that promise to ex-
pand our capabilities also here in genomics. Thus it is impor-
tant to engage the community in a joint discussion about what
these models actually are and can already do, their weak-
nesses, and what the next generations of models could look
like. This opinion paper is a starting point for this discussion.

Decoding the Human Genome
The human genome sequence provides the underlying code
for human biology. Despite 20 years of study since it was
first sequenced, our understanding of how the genome se-
quence encodes the cellular programs and development of
different cell types, as well as the role of genetic variants
in disease is far from complete. Models that can “read” the
genome of each individual and predict the different regula-
tory layers and cellular processes across cell types hold the
promise to better understand, prevent and treat diseases, and
to achieve personalized medicine based on each individual’s
genetic profile (Gunter and Green 2023).

Recent advances in genomics research and sequencing
technologies have resulted in an explosion of molecular data.
This wealth of data has enabled comprehensive characteri-
sations of the functional activity of the genome across hun-
dreds of human and mouse cell types, as well as for other
species (ENCODE 2012; Roadmap Epigenomics 2015). The
confluence of such large-scale datasets, coupled with sig-
nificant advancements in deep learning and large language
models (LLMs), is bringing us closer to the long-sought as-
piration of unraveling the language of molecular biology.

A New Paradigm with Deep Learning
Machine learning algorithms are designed to automatically
detect patterns in data and have early been applied to ge-
nomics large-scale data (Libbrecht and Noble 2015). How-
ever, the performance of such methods is highly dependent

on the quality of features extracted from the data and has
shown limited capability. A transformative paradigm shift
has emerged in recent years with the advent of deep neural
networks, obviating the necessity for predefined features by
embedding the computation of features into the automated
learning process. The application of deep learning in ge-
nomics has heralded a revolutionary transformation in the
way we analyze the human genome. Since their first ap-
plications in genomics in 2015 that deep neural networks
(mostly based on CNNs) have been applied to predict di-
verse molecular phenotypes and have emerged as the leading
type of predictive models in genomics (Eraslan et al. 2019;
Yue et al. 2023). Through the interpretation of the features
learned by such models, new biological features have also
been discovered about each of the individual gene regulation
layers (Avsec et al. 2021b; de Almeida et al. 2022; Janssens
et al. 2022; Linder et al. 2022; Agarwal and Kelley 2022).

However, some problems such as predicting the expres-
sion of every gene in different cell types from sequence
alone remain unsolved. This is a challenging task as gene
expression is influenced by regulatory elements located very
far from the target gene, and it involves multiple layers
of gene regulation such as transcription, splicing, termina-
tion/polyadenylation, and RNA stability. Enformer (Avsec
et al. 2021a) achieved a good improvement in gene expres-
sion prediction over previous models (Kelley et al. 2018;
Zhou et al. 2018) by combining convolutional and trans-
former layers to effectively integrate information from up
to 100 kb away in the genome. However, Enformer is still
limited at capturing the causal effects of distal regulatory
elements on expression and their sequence features (Karol-
lus, Mauermeier, and Gagneur 2023) or the effect of per-
sonal variants in gene expression (Sasse et al. 2023). The
limited performance in this and other tasks is most probable
due to the small quantity of available regulatory and gene
expression data, and could benefit from leveraging existent
unlabeled genomic data such as the genomes sequenced of
human cohorts.

From Supervised to Self-Supervised learning
Labeled data scarcity remains one of the major challenges in
most scientific fields and is even more present in genomics
given the time and cost associated with performing such as-
says. However, the development of modern sequencing tech-



niques in association with their continuously decreasing cost
has led to a significant increase in the amount of raw genome
data, with genomes available for thousands of species and
individuals (The 1000 Genomes Project 2015). This moti-
vates the need to exploit such data to build better models.

Self-supervised learning imposed itself as the solution in
NLP to face a similar challenge, and subsequently in other
fields such as computer vision and proteomics (Ericsson
et al. 2022). A common strategy to learn from unlabeled
sequential and discrete data, where we would typically re-
fer to each discrete entity as a token - think about words in
English or Nucleotides for DNA - is to pre-train the model
to reconstruct masked tokens in a sequence or predict the
next token from left to right. These training strategies, of-
ten applied with Transformers, were shown to learn general
representations of the input data that can be then leveraged
to solve supervised tasks even in low-data regimes. These
models are often referred to as foundation - as they build
general knowledge about the data they are trained on. They
are also commonly referred to as language models (LM) - or
often even large language models (LLMs) as performance
was shown to increase with the model size - as if one as-
sumes tokens to be the base constituent of a language, then
these models implement a model of such language (Naveed
et al. 2023).

Genomics experienced the emergence of such models
very recently (Ji et al. 2021; Zhou et al. 2023; Nguyen et al.
2023; Benegas, Batra, and Song 2023; Dalla-Torre et al.
2023; Fishman et al. 2023), a bit later than proteomics for
instance where these models are now more mature (Jumper
et al. 2021; Baek et al. 2021; Lin et al. 2023). Typically, such
models consider single nucleotides or k-mers, akin to DNA
“words”, with k ranging from 3 to 6 as tokens. Some works
also used learnable encoding techniques, such as byte pair
encoding, to build a more complex “vocabulary”. An inter-
esting discussion to have here is whether DNA - that is often
referred to as the “language of life” - should be considered as
a language at the same extent than Human languages, where
nucleotide tokens can be considered as words and chunks of
genomes as sentences, or whether this tokenization is a sim-
ple computational trick to apply the latest self-supervised
technique on that type of data where token sizes and com-
plexity are just adapted to optimize the trade-off between
sequence length and vocabulary size without having actu-
ally any “true meaning”. While we highlight the fact that it
wouldn’t be the first time that one would anthropomorphize
models and over-interpret what they actually are, we leave
this discussion to the reader. What is for sure true is that
these models are building strong representations of DNA
data despite any supervision.

DNABERT (Ji et al. 2021) was the first published model
of that sort, BERT referring to that training technique that
predicts masked tokens. It was trained on the reference hu-
man genome, using windows of 512bp. The authors showed
that after its self-supervised training - that we refer to as
pre-training - the model can be quickly finetuned to pre-
dict promoters, splice sites and transcription factor binding
sites, highlighting the versatility of the learned representa-
tions. A few months later, the Nucleotide Transformer (NT)

paper (Dalla-Torre et al. 2023) was released with the first
attempt to build a systematic study and benchmark to build
foundation models for DNA, testing models of varying sizes
up to 2.5B parameters and pre-trained on diverse genomes
from different individuals and species using also a BERT
protocole. The authors also showed that during pre-training
such models learn to focus their attention on crucial genomic
elements and sequence motifs. Both DNABERT and the
NT released a v2 of their models (Zhou et al. 2023; Dalla-
Torre et al. 2023) that are smaller, thus faster, while showing
higher performance on the downstream tasks by leveraging
the multi-species dataset introduced in the original NT study
and multiple implementation tricks coming from the recent
NLP literature.

Additional models pre-trained on DNA sequences include
GPN, GENA-LM and Genslms (Benegas, Batra, and Song
2023; Fishman et al. 2023; Zvyagin et al. 2022), while for
RNA sequences there are the SpliceBERT (Chen et al. 2023)
and BigRNA (Celaj et al. 2023). GPN-MSA was also intro-
duced recently to leverage aligned sequences from related
species (MSA) to improve performance for prediction of
deleterious coding and non-coding variants in a zero-shot
manner (Benegas et al. 2023).

What these models can/cannot already do?
We now reached a stage where multiple strong DNA founda-
tion models have been developed, trained on up to 6 trillion
nucleotides and were evaluated on dozens of classification
and regression genomics tasks, where the NT-v2 seems to
be dominating after fine-tuning (Dalla-Torre et al. 2023). A
point worth mentioning is that the scaling laws observed in
these recent model developments are very encouraging for
the field. It was demonstrated that dozens of billions of pa-
rameters are required in NLP for the models to actually ex-
press their potential (Hoffmann et al. 2022; Touvron et al.
2023a,b). In computer vision however, recent works showed
that only a few billions parameters maximum are enough
(Zhai et al. 2022). Similarly, in genomics, it seems that a
few hundreds of millions might be the sweet spot, which
implies that such models can be developed much faster and
at a lower computational cost (Dalla-Torre et al. 2023).

However, such models still fail to significantly outper-
form specialized methods when a large amount of labeled
data is available. Good examples would be works such as
DeepSEA/Sei for chromatin predictions (Zhou and Troy-
anskaya 2015; Chen et al. 2022), SpliceAI for splice site
prediction (Jaganathan et al. 2019) or DeepSTARR for en-
hancer activity prediction (de Almeida et al. 2022). Models
such as NT-v2 were shown to be able to reach only similar
performance. These tasks have in common that they exhibit
datasets much larger than the other typical downstream tasks
where these foundation models excel. Think about hundreds
of thousands / millions of labeled inputs versus only thou-
sands / dozen of thousands of inputs. We believe that the
key to an improved performance also for high-data tasks is
to be able to achieve transfer between them. We discuss this
point in the next section.

Current foundation models remain also limited by the size
of the nucleotide sequences they can process. The NT-v2



models can handle sequences of length 12kb (Dalla-Torre
et al. 2023), going up to 36kb for the GENA-LM mod-
els (Fishman et al. 2023). This limitation originates from
the quadratic scaling with the input sequence length of the
memory and compute time required for Transformer models.
This hinders the application of such models to more rele-
vant tasks in the genomics community such as gene expres-
sion prediction or precise and accurate variant effect pre-
diction which require modeling long-range effects that can
happen up to hundreds of thousands of base pairs away. Re-
cently, a new collection of Foundation models dumped Hye-
naDNA were developed to tackle this challenge (Nguyen
et al. 2023). These models rely on a novel architecture that
leverages fourier transforms to avoid the quadratic scaling.
However, such models haven’t demonstrated their capabil-
ities to solve complex tasks over very large sequences of
nucleotides yet. In addition, recent works showed that their
performance in short-range tasks decreases when the train-
ing input size increases (Dalla-Torre et al. 2023). As such,
there are still many opportunities to develop the next gen-
eration of models that can make accurate predictions from
full genes and maybe chromosomes, including their regula-
tory elements. As the field of NLP observed recently the ap-
pearance of many techniques that managed to successfully
increase drastically the input length of Transformer models
to process hundreds of thousands of tokens at the same time
(Beltagy, Peters, and Cohan 2020; Zaheer et al. 2020; Ding
et al. 2023; Guu et al. 2020), we are hopeful that the field of
genomics will experience a similar trend over the next few
years.

Another key aspect to be discussed over the next few years
is the interpretability of these models. As this topic is bigger
than genomics, we leave that conversation for future work.

What will the next generations look like?
DNA foundation models are now at a stage similar to the
one NLP was in 2018, before the “T5 moment” (Raffel et al.
2020). Models can produce accurate representations but they
lack transfer capabilities. In NLP this was achieved through
sequence-to-sequence models and formulating all tasks as
text-to-text tasks. This consequently led to the “GPT mo-
ment” (Brown et al. 2020), where researchers observed that
scaling these text-to-text models allowed new capabilities to
emerge such as in zero-shot settings, which means solving
new tasks without showing examples. Current DNA foun-
dation models are incapable of such things. While several
models showed that computing distances over the produced
sequence representations can correlate well with interesting
effects such as mutation deleteriousness (Cheng et al. 2023;
Dalla-Torre et al. 2023; Benegas et al. 2023; Benegas, Ba-
tra, and Song 2023) - calling this zero-shot as well - they
fail to produce actual transfer between tasks. In other words,
current models can exploit all the raw genome data avail-
able to become stronger but they fail later to connect labeled
tasks as well as to achieve transfer and emergent capabilities.
This is mainly due to the current structure of these models.
As framing all tasks as text-to-text solved this issue in NLP
(Raffel et al. 2020), it is therefore very tempting to do the
same in genomics.

However, DNA as such is not a general enough medium to
do so. While all the tasks of interest in NLP can be expressed
with English, all the tasks of interest in genomics cannot
be expressed solely with nucleotides. Think about produc-
ing gene annotations or predicting gene expression using
only a nucleotide-based alphabet. To achieve this, current
approaches will need to expand their vocabulary - whatever
this means, being a human interpretable one or not - to unify
all tasks of interest within the same framework. This vocab-
ulary should also be an opportunity to provide the models
more context such as the cell or tissue type or the position
of the DNA sequence within the genome. This will allow to
blend in the same models not only all sequenced genomes
but also all existing annotations and assays that have been
performed - such as RNA-seq, ATAC-seq and others. This
prospect is very exciting and we foresee it will be the key
to unlocking completely new capabilities and genomics in-
sights with these types of models.

Conclusions and Future Perspectives
Deciphering the language of biology, how to go from DNA
to gene expression and to proteins, and linking it to human
health is closer than ever. Foundation models might be the
new paradigm that we were missing to help make sense of
all existent labeled and unlabeled data to create more general
models with emerging capabilities. Taking advantage of the
large-scale biobanks containing genetic and health informa-
tion of thousands of individuals (Halldorsson et al. 2022),
these models will help associate genomic variant informa-
tion and other molecular data with human health informa-
tion.

To achieve that we will need to rethink existing founda-
tion models over two main axes: (1) increasing their recep-
tion field up to at least 1M nucleotides to process full genes
with their regulatory elements. These models should also be
able to focus their attention at both low and large scale to
solve tasks on varying lengths of sequencing, from detecting
single-nucleotide genetic variants to predicting gene expres-
sion; (2) enabling transfer between tasks through building
sequence-to-sequence models as well as a unified vocabu-
lary that encompasses DNA and all needing quantities to ex-
press the tasks of interest. Only through such changes can
these models keep improving and integrating all the labeled
data available to develop the capabilities required to aid in
our understanding of biology and medicine.

We believe that these developments should be in line with
the main goals in the field for the next years: (1) more accu-
rate prediction of the different molecular profiles, and in par-
ticular gene expression, from sequence; (2) understand the
mechanisms and causality; (3) predict the impact of genetic
variants on function and disease, improving polygenic risk
scores and genetic diagnosis; (4) the design of synthetic se-
quences with specific regulatory properties (Taskiran 2022),
with important implications for cell and gene therapy; (5) ul-
timately providing new tools and therapeutics for personal-
ized medicine. These are challenging goals and will require
close collaboration between biologists/geneticists and AI/-
computer scientists.
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