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Abstract

This paper discusses the critical issue of enhancing
the explainability and performance of Large Language
Models (LLMs) in the biomedical domain by leverag-
ing the structural benefits of Knowledge Graphs (KGs).
Despite their impressive performance, LLMs often suf-
fer from generating non-factual content, a phenomenon
known as ”hallucination”. The lack of explainability ex-
acerbates this issue, making it challenging to trust and
interpret LLM outputs. By integrating KGs, which pro-
vides structured, interpretable data, we explore an ap-
proach to not only mitigate hallucinations but also to
improve the transparency of the model’s reasoning pro-
cess. This paper demonstrates promising results when
combining LLMs and KGs using the attention mecha-
nism. Our method demonstrates plausible local expla-
nations that illustrate reasoning between the LLM and
KG while improving the performance of a biomedical
reasoning task.

Introduction
Large Language Models (LLMs) bring a lot of potential to
the biomedical domain. LLMs can be used to generate text,
analyze biomedical data, personalize medical treatments,
and much more. However, there are two key challenges in-
herent to LLMs that need to be addressed before they can
be safely and effectively deployed for real-world use in a
biomedical setting. While the state-of-the-art LLMs learn
from a large corpus of data and perform well on evaluation
datasets, they are prone to hallucinate; that is, they generate
predictions or results that are non-factual or misleading in a
confident manner. The ability to explain the model’s predic-
tions is vital to combat hallucinations. Explainability is also
a challenge. The size and complexity [18] of LLMs make it
difficult to have local and global self-intrinsic explanations.

To increase accuracy on downstream tasks, we look at
fusing LLMs with knowledge graphs (KGs), since previous
works combining the two demonstrate an increase in perfor-
mance on various downstream biomedical tasks [28, 2, 22].
To increase model transparency for individual predictions,
exploring attention is a good candidate for exploration,
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however, it does not come without controversy. Some re-
searchers challenge the validity of attention as an explana-
tion through various experiments [13, 19]. Others challenge
this by demonstrating different ways attention can be ex-
plainable [1, 19, 20, 8].

In this work, we fuse LLMs with a biomedical KG and
address the increased plausibility in attention-based expla-
nations by directly attending LLM embeddings over KG em-
beddings. To demonstrate our contributions, we focus on
biomedical reasoning with the MedQA dataset and lever-
age the fusion of BioBERT [16] embeddings with biomed-
ical KG embeddings of Unified Medical Language System
(UMLS) terms [4] extracted from MedQA questions and an-
swer choices [14]. Our methodology introduces several key
contributions. Firstly, we propose a model that integrates
LLM embeddings with biomedical KG embeddings using
Cross-Modal Attention (CMA) to enhance both accuracy
and explainability on a biomedical reasoning task. We re-
fer to this model as the CMA model. Our empirical results
demonstrate that the CMA model outperforms the baseline
of fine-tuning BioBERT alone on the MedQA dataset, high-
lighting the effectiveness of combining textual and KG em-
beddings. Additionally, we illustrate the plausible explain-
ability of our model by visualizing the attention of the CMA
mechanism.

Finding the best way to unify KGs and LLMs to combat
hallucinations and enhance explainability, particularly in the
biomedical domain, is an ongoing research question. We be-
lieve that our promising results may pave the way to help
tackle this problem.

Related Works
Traditionally, language model predictions have been ex-
plained through attention-weight analysis. However, stud-
ies indicate that attention weights are not always reliable
explanations due to the weak correlation between attention
weights and input feature importance [3]. This motivates the
need for more faithful explanation methods. It is demon-
strated that attention on input features does not correlate well
with gradient-based feature importance, counter-factual at-
tention distributions do not change model outputs, and raw
attention focuses on non-important tokens such as punctu-
ation [13, 19]. These serve as evidence against the faith-
fulness and plausibility of attention as an explanation. On



the contrary, some researchers show that with certain meth-
ods, attention can correlate with gradient-based feature im-
portance [1] and that BERT attention heads capture syntax
effectively and overall attend to more than just punctuation
and delimiter tokens [8]. This serves as an opportunity to ex-
plore different ways to use attention for faithful and plausi-
ble explanations, particularly on LLMs. Two promising ex-
amples make a case of utilizing attention to help explain
transformer models: [6] uses the gradient of the attention
weights with relevancy maps obtained through layer-wise
relevance propagation [7] on bi-modal transformers to show
the most important features in images for visual question and
answering tasks. [20] developed a methodology that selects
the most faithful attention-based interpretation by choosing
the best combination of layers, matrix operations, and at-
tention heads. They also introduce a new faithfulness metric
suited for transformer models that align with ground truth
rationales.

Fusing KGs and LLMs shows promising results in a va-
riety of biomedical tasks. [28] presents QA-GNN, a method
that enhances question answering by combining LLMs and
KGs. It creates a joint graph representation that connects a
question and answers context to entities in a retrieved knowl-
edge subgraph, processed by an attention-based graph neural
network (GNN). Deep Bidirectional Language-Knowledge
Graph Pretraining (DRAGON) [27] proposes integrating
KG information during the pre-training phase of LLMs with
a cross-modal layer that models interactions over text and
KGs, aiming to combine masked language modeling with
KG link prediction. A Sophisticated Transformer Trained
on Biomedical Text and Knowledge Graphs (STonKGs) [2]
concatenates biomedical text with embeddings of the IN-
DRA biomedical KG [11]. This bi-modal representation is
fused in their BERT-inspired cross-encoder.

The potential of attention-based explainability and perfor-
mance gains of combining LLMs with KGs inspire us to
combine LLMs with KGs and utilize attention to increase
model performance while increasing explainability.

Methodology
Our goal is to combine text embeddings and KG embeddings
with CMA to fuse both modalities in a more explainable
manner while also improving the performance of MedQA
when compared to only considering the text modality.

Figure 1 illustrates an overview of our methodology. At
a high level, our process involves first extracting UMLS
KG triples relevant to each MedQA question and its answer
choices. The triples and the MedQA text are encoded into
embeddings with a graph neural network (GNN) and LLM,
respectively. A single-layer cross-modal transformer that
utilizes CMA (instead of self-attention) fuses both modali-
ties. For the final prediction, a single dense layer with a soft-
max activation is placed on top of the classification (CLS)
token’s embedding that is generated by the LLM and pro-
cessed through the transformer layer with CMA. This final
layer is used to make predictions on MedQA. Finally, the
attention probabilities of the CLS token’s embedding with
respect to the UMLS KG embeddings in the CMA mech-

Figure 1: Overview of methodology. (a) UMLS terms and
relations are extracted from MedQA text. (b) A GNN en-
codes these into KG embeddings and an LLM encodes the
MedQA questions and answers into text embeddings. (c) A
single transformer block with CMA learns the MedQA task.
(d) Visualizing the CLS embedding’s attention over KG em-
beddings gives plausible artifacts of the model’s reasoning.



anism are visualized for local explainability of predictions.
We will refer to this model as the CMA model.

Datasets
MedQA is a multiple choice question and answer dataset
meant to gauge biomedical reasoning. MedQA has 12,723
questions that originate from medical exams [14]. The
UMLS [4] KG consists of a meta-thesaurus of medical terms
and their relationships represented as a KG. The UMLS KG
has 297,927 UMLS terms, 98 relationships, and 1,212,586
edges. We use the UMLS KG to train our GNN and MedQA
to train our CMA model.

KG Extraction
We extract KGs for each MedQA question and its answer
choices. To do this we utilize SciSpacy’s UMLS entity linker
[21] and SemRep [15] to extract UMLS terms and relation-
ships. We take these and form them as a set of triples that are
a subset of a UMLS KG. The purpose of extracting the KGs
from MedQA questions and answers is so that the CMA
mechanism can explicitly fuse relevant UMLS KG embed-
dings with the embeddings of the MedQA text.

Text and KG Embeddings
BioBERT [16] is a BERT-like [10] LLM pre-trained over
a large biomedical corpus. We use BioBERT to encode the
MedQA questions and answers so that the text is represented
in a way that is bidirectionally contextualized. To encode
extracted KGs into KG embeddings, we inductively train
a graph autoencoder on the UMLS KG for link prediction.
The node features are initialized with BioBERT embeddings
of their respective UMLS terms. The encoder is a 2-layer
GraphSage model and the decoder is DistMult [26]. The in-
tuition behind this is that GraphSage will enrich the original
term representation with the topology of neighboring nodes
[12], and DistMult [26] will further enrich the representa-
tion concerning 1-to-N and symmetric relationships within
the UMLS. When producing KG embeddings for the CMA
model, we only use the encoder.

Cross-modal Attention (CMA)
We fuse the text embeddings of the MedQA with the em-
beddings using multi-head CMA inside a transformer block
[24]. This architecture is different from how StonKGs[2] uti-
lizes CMA. We don’t concatenate both modalities of embed-
dings and perform self-attention on the concatenated rep-
resentation. Instead, our model passes the text embeddings
as the attention mechanism’s queries and the KG embed-
dings as keys and values [5, 6]. We define CMA as fol-
lows: softmax(QKT

√
dh

)V where Q ∈ Rh×q×dh , K,V ∈
Rh×k×dh . Here, h is the number of heads, q is the number
of tokens from the text, k is the number of unique UMLS
terms in the extracted KG, and dh is the embedding dimen-
sion [6]. The design choice of using a CMA allows us to
fuse the two modalities in a way that conveniently allows us
to visualize the explicit relationships between text and KG
embeddings through analysis of the attention probabilities.
Since StonKGs [2] concatenates the modalities, the direct

relationships between text and KG embeddings cannot be
examined explicitly.

Explanatory Visualization
Once the model is trained, the CMA mechanism is exam-
ined on MedQA predictions. [6] explores CMA between
text and vision modalities to interpret visual question and
answer predictions. [1, 6] averages attention across the dif-
ferent heads to increase the faithfulness of their attention-
based explanations. These ideas are borrowed to understand
how the text embeddings interact with the KG embeddings.
Since the dense prediction layer is only over the final CLS
token embedding, we only observe the attention probabili-
ties produced in softmax(QKT

√
dh

) for the CLS token embed-
ding over the UMLS KG embeddings and we average these
values across the heads. The probabilities are visualized as a
(1×k) vector with the shade of each entry corresponding to
the corresponding attention probability for user readability.

Experiment
Datasets
To finetune the baseline LLM and train our CMA model, we
use the MedQA dataset as described above.

Training details
The baseline model, BioBERT [16], is fine-tuned on
MedQA using the Huggingface transformers library. [25].

To train the CMA model we set h = 8 and dh = 768
in the CMA mechanism. We minimize the cross-entropy
loss with the AdamW optimizer [17] paired with a linear
scheduler with 100 warm-up steps and the learning rate
lr = 5e−5. For the CMA model, we use pre-trained embed-
dings of BioBERT obtained using the Huggingface trans-
formers library [25]. At each step of the training process, the
CMA model processes two main inputs: first, the BioBERT
embeddings derived from a MedQA dataset question and its
answer choices, and second, the KG that has been extracted
from the same MedQA dataset entry that has been encoded
into KG embeddings by the GNN. It is also important to
note that in training, no additional learning takes place for
the GNN or BioBERT, they are only used to generate em-
beddings for the CMA model to input.

Model val acc test acc
BioBERT 0.291 0.279
CMA 0.296 0.305

Table 1: Comparison of model accuracy on the MedQA
dataset.

Ablation study
We conduct an ablation study to understand the CMA
model’s and BioBERT’s difference in performance and gen-
eralization on the MedQA dataset. We use validation and test
accuracies as our evaluation criteria. Table 1 outlines the ex-
periment results obtained from this study.



Baselines. The baseline we use is BioBERT fine-tuned on
MedQA. We compare the results of the baseline with the
CMA model trained on MedQA.

Results. BioBERT finetuned on MedQA exhibits valida-
tion and test accuracies of 0.291 and 0.279, respectively.
Interestingly, the CMA model resulted in an enhancement
in performance, achieving validation and test accuracies of
0.296 and 0.305, respectively. Moreover, the combination of
BioBERT with CMA not only elevated the accuracy but also
enhanced the model’s generalization capability. This is evi-
denced by the fact that the CMA model’s performance on
the test dataset surpassed its performance on the validation
dataset. BioBERT’s test accuracy is worse than its validation
accuracy. These results indicate a promising direction for
improving both the accuracy and generalizability of LLMs
through the strategic use of CMA.

Figure 2: Example of a visualized explanation where the
CMA model makes a correct prediction on an unseen
MedQA question. The blue highlighted words are where
UMLS terms are extracted from the questions and answers.
The plots illustrate the attention probabilities of the CLS to-
ken over the extracted UMLS terms. A darker color indicates
a higher attention probability.

Explanations
As opposed to self-attention-based interpretations [1, 20],
which either only show how tokens attend to other tokens
[8] or does not explicitly show the relationship between the
text and KG modalities [2], we present a different viewpoint
to interpret the predictions made by our CMA model.

Instead, we can explicitly examine the relationships be-
tween the fused BioBERT and KG embeddings by observ-
ing the CMA’s attention probabilities. Our method of expla-
nation is inspired by [1] averaging attention across the atten-
tion heads and [6] using CMA and visualizing attention for
visual question and answer models.

Figure 3: Example of a visualized explanation where the
CMA model makes an incorrect prediction on an unseen
MedQA question. The blue highlighted words are where
UMLS terms are extracted from the questions and answers.
The plots illustrate the attention probabilities of the CLS to-
ken over the extracted UMLS terms. A darker color indicates
a higher attention probability.

The crux of our explanation methodology lies in visual-
izing the attention probabilities of the model’s CLS token
embedding over the different KG embeddings. We chose the
CLS token because the CMA model’s dense prediction layer
inputs the CLS token embeddings. This visualization serves
as a window into the model’s reasoning, providing insights
into how it associates biomedical concepts encoded in the
KG with the text of the question and answer choices. Fig-
ures 2 and 3 exemplify this, showcasing the model’s atten-
tion patterns for both correct and incorrect predictions.

When the model makes a correct prediction, such as iden-
tifying ’Staphylococcus Aureus’ (Figure 2), a microorgan-
ism known to cause pneumonia, the attention visualization
reveals a strong focus on clinically relevant UMLS terms
extracted from the question and answer choices, in this
case, ’Lung consolidation’. This example is significant since
pneumonia is a type of lung consolidation [9, 23].

Conversely, when the model makes incorrect predictions,
visualizing the CMA offers critical insights into the model’s
potential areas of confusion. For example, when the model
incorrectly predicts ’A history of stroke or venous throm-
boembolism’ (Figure 3), the disproportionate attention to
’Cerebrovascular accident’ (the medical term for stroke) in-
dicates a misunderstanding or an overemphasis on certain
terms. This analysis is invaluable for identifying and ad-
dressing the model’s biases or knowledge gaps.

These findings illustrate the potential of CMA not only
to enhance model performance but also to offer plausible
explanations for the model’s predictions. The benefit of this
type of visualization is that humans can easily understand
which UMLS terms the CLS token attends to the most and



trace back where from the original text the UMLS terms are
extracted. This joint benefit is particularly promising in the
biomedical domain, where both accuracy and explainability
are crucial.

Conclusion
In conclusion, our research demonstrates the significant po-
tential of integrating LLMs with KGs to enhance both the
performance and the explainability of models in the biomed-
ical domain. Other works in this field demonstrate increased
performance but do not address the problem of attention-
based explainability. We show that by using CMA to fuse an
LLM and KG, not only do we achieve improved accuracy on
a biomedical reasoning task but also demonstrate plausible
attention-based explanations for local predictions.

Looking ahead, we aim to further refine our approach
by comparing it to different baseline LLMs, addressing the
faithfulness of our explanations, optimizing the graph ex-
traction process, and expanding our model’s applicability
to a broader range of tasks. Additionally, a comprehensive
analysis of each component’s contributions through ablation
studies will deepen our understanding of the model’s me-
chanics and inform future enhancements.

Our work contributes to the growing body of research ad-
vocating for the integration of LLMs and KGs. As we con-
tinue to explore this promising avenue, we remain commit-
ted to unlocking new potentials in bio-medicine, aiming for
a future where bio-medicine and artificial intelligence can
converge more transparently and effectively.
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