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Abstract

Ribosome profiling is a next-generation sequencing technique
used to chart translation by means of mRNA ribosome oc-
cupancy. It is an instrumental tool for the detection of non-
canonical coding sequences. However, due to the complex
nature of next-generation sequencing data, existing solutions
that seek to identify translated open reading frames from the
data still suffer from a high degree of false positive predic-
tions. We propose RIBO-former, a new approach featuring
several innovations for the detection of translated open read-
ing frames. RIBO-former is built using recent transformer
models that have achieved considerable advancements in the
field of natural language processing. We discuss several strate-
gies to parse ribosome profiling data for which we provide a
comprehensive ablation study. Through benchmarking, we
find RIBO-former to outperform previous methodologies by a
large margin.

Introduction
Ribosome profiling was first introduced by Ingolia et al.
to study the translatome of cells through deep sequencing
(2009). The technique sequences ribosome-protected frag-
ments that are aligned to a reference genome, resulting in an
occupancy at nucleotide resolution and serving as a proxy
for translation in the evaluated sample. Ribosome profiling
has successfully underlined the identification and workings
of differential splicing (Reixachs-Solé et al. 2020), micropro-
teins (Weaver et al. 2019), and drug mechanisms (Chu and
Pelletier 2018; Wolfe et al. 2014).

Similar to the output generated by other next-generation
sequencing techniques, ribosome profiling results in complex
data. Traditionally, processing of this data involves various
manual processing steps that aggregates the data into cu-
rated features. However, ribosome profiling data has data set
dependant biases and variance that are caused by both bio-
logical factors (e.g., tissue type, cell lines vs. tissue samples)
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and technical factors (e.g., translation inhibitors, lab proto-
cols) (Mudge et al. 2022). As existing tools do not capture
data set specific correlations, tools that delineate translated
open reading frames (ORFs) are bound to suffer from low
performances.

In this manuscript we introduce a custom transformer net-
work, dubbed RIBO-former, for detecting translated ORFs
using ribosome profiling next-generation sequencing data.
RIBO-former features three distinct improvements over ex-
isting approaches. First, deep learning methodologies feature
automated feature extraction, allowing us to apply minimal
feature pre-processing, omitting steps that potentially consti-
tute a loss of information or introduce biases. Second, our
tool fine-tunes on independent data sets, allowing it to capture
dataset-dependent correlations. Third, we apply attention-
based neural networks, which are well suited to parse read
information along variable-length RNA transcripts. These
have been reported to achieve state-of-the-art performances
on a variety of learning problems. We outline and evaluate
multiple approaches to present ribosome profiling informa-
tion into the transformer model. Through benchmarking, we
shows RIBO-former to outperform existing tools.

Material and Methods
RIBO-former is created to map the translatome at single-
nucleotide resolution of samples using ribosome profiling
data . To simplify the experimental set-up, we train a model
to detect active translation initiation sites (TISs), from which
the open reading frame can be derived. RIBO-former pro-
cesses ribosome profiling data along a full transcript (Fig-
ure 1). No pre-processing of other types of data, such as
start codon or ORF information, are used to curate features
or build a candidate ORF library. Instead, all positions on
the transcriptome are evaluated using only information from
mapped ribosome protected fragments. Mapping of the ri-
bosome profiling data is performed using STAR (Dobin and
Gingeras 2015) and cutadapt (Martin 2011).

Input data generation
Read lengths ranging from 20 to 40 nucleotides are included
in the data. To allow computation with a transformer-based



Figure 1: Overview of RIBO-former pipeline.(left) RIBO-former processes ribosome reads along a transcript region and
generates vector embeddings for each transcript position based on the number of mapped reads and read length fractions. (middle)
Two approaches are evaluated for the construction of input embeddings. One approach creates an input vector from the read
counts at each position (A), while a second approach seeks to include read length information (B) (right) Illustration of the
RIBO-former model. Expressed translation initiation sites (TISs) are predicted as a proxy for coding sequences.

architecture, vector representations are used that capture the
occupancy of mapped reads by read length for each position
(Figure 1). For a given position, the vector embedding ec is
obtained from the read count c using a set of feed-forward
layers φ. Reads are only mapped to a single position on the
transcript (e.g., by their 5’-end). Existing tools use a similar
methodology, but apply various tools (e.g., Plastid (Dunn and
Weissman 2016) and RiboWaltz (Lauria et al. 2018)) to offset
mapped reads as a function of their read length. Read counts
are normalized across the transcript for numerical stability.

ec = e � tanh(φ(c)), (1)

with c ∈ [0, 1], φ : R1 −→ Rh, and e ∈ Rh. h is a
hyperparameter of the model indicating the input dimension.

In this paper, we explore the inclusion of ribosome read
length information as part of the information applied to de-
termine TIS locations. For a given transcript position, el
is calculated using the read length fractions l following the
equation:

el =

21∑
i=0

Ei ∗ li, (2)

with E ∈ R21×h and l ∈ [0, 1]21, where
∑

l = 1. The
matrix E incorporates vector embeddings for read lengths
20–40 and is optimized as part of the training process. Note
that ribosome data by read length is sparse and the majority
of values in l are 0.

Model architecture and optimization
Continuing upon our previous work on detecting TISs us-
ing transcript sequence information (Clauwaert et al. 2023),
we utilize an identical model framework for RIBO-former.
Hyperparameter selection was performed using the data set
featuring the most mapped reads (SRR2733100), where the
optimal model features 212K weights (Algorithm 1). An

Table 1: Data sets and their corresponding publications
used in this study. Only a single data set (SRR entry) is
used from each study. CHX: Cycloheximide, LTM: Lactim-
idomycin, HRR: Harringtonine, CHL: Chloramphenicol

Author SRR entry Treat-
ment

Mapped
Reads

Benchmarking
Ji et al. SRR1802129 CHX 2.84E+06
Calviello et al. SRR2433794 CHX 3.56E+07
Gawron et al. SRR2732970 LTM 1.95E+08
Gawron et al. SRR2733100 CHX 2.46E+08
Raj et al. SRR2954800 HRR 3.87E+06
Martinez et al. SRR8449577 CHX 1.19E+07
Chen et al. SRR9113067 – 6.04E+06
Gaertner et al. SRR11005875 CHX 9.75E+06
Pre-training
Stern-Ginossar et al. SRR592960 LTM 4.69E+06
Gonzalez et al. SRR1562539 CHX 1.43E+07
Rubio et al. SRR1573939 CHX 8.12E+07
Werner et al. SRR1610244 CHX 1.43E+07
Tanenbaum et al. SRR1976443 CHX 4.40E+07
Zur, Aviner, and Tuller SRR2536856 CHX 1.74E+07
Loayza-Puch et al. SRR2873532 CHL 1.93E+07
Bencun et al. SRR3575904 HRR 8.47E+06

important building block is a recent innovation, dubbed the
performer, in calculating full attention introduced by Choro-
manski et al. (Choromanski et al. 2021), allowing long-range
attention spanning full transcripts featuring tens of thousands
of positions. The binary cross-entropy loss is used to opti-
mize the model.



Table 2: RIBO-former performances for different input token and optimization strategies. Scores are calculated on the
test set after selection of the model with the minimum validation loss. The area under the receiver operating characteristic
curve (ROC) and area under the precision-recall curve (PR) are given. Strategy A has no read length information and generates
input tokens by counting the total of reads at each position by taking the 5’ position, or offsetting reads Plastid and RiboWaltz.
Strategy B is calculated incorporating read length information. As strategy B performs optimal, this approach has been selected
to evaluate pre-training of the model using a (self-)supervised learning objective.

No pre-training Self-supervised Supervised
5’ (A) Plastid (A) RiboWaltz (A) 5’ (B) 5’ (B) 5’ (B)

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

SRR1802129 0.938 0.021 0.935 0.014 0.941 0.021 0.945 0.022 0.946 0.021 0.948 0.024
SRR2433794 0.965 0.094 0.964 0.083 0.966 0.091 0.968 0.104 0.966 0.104 0.969 0.112
SRR2732970 0.963 0.161 0.965 0.156 0.964 0.154 0.969 0.211 0.970 0.221 0.972 0.233
SRR2733100 0.965 0.161 0.964 0.145 0.964 0.151 0.970 0.217 0.969 0.220 0.972 0.235
SRR2954800 0.935 0.039 0.931 0.031 0.932 0.032 0.937 0.040 0.935 0.035 0.939 0.045
SRR8449577 0.955 0.072 0.954 0.058 0.955 0.064 0.956 0.075 0.959 0.086 0.961 0.094
SRR9113067 0.943 0.018 0.942 0.016 0.943 0.017 0.943 0.019 0.945 0.017 0.950 0.026
SRR11005875 0.967 0.073 0.966 0.072 0.967 0.072 0.967 0.080 0.968 0.078 0.971 0.092

Algorithm 1 RIBO-former network architecture. Given are
the different layers, hyperparameter titles, optimal selection
with bias term (italics) and total weights (bold).

RIBO-former | 211,964
Read Count | 21,546

Linear | 1× dim | 1× 42 + 42 | 84
Linear | dim × dim ∗ 6 | 42× 252 + 252 | 10,836
Linear | dim ∗ 6× dim | 252× 42 + 42 | 10,626

Read Count Embedding | 1 × dim | 1× 42 | 42
Read Length Embedding | read lengths × dim | 21× 42 | 882
Pos. Embedding | fixed pos. embeddings | 0
Performer | 185,712

Layer (× depth | 6) | 30,952
Layer norm | dim × 2 | 42× 2 + 2 | 86
Attention head (× n_head | 6) | 2,064
WQ | dim × dim_head | 42× 16 + 16 | 688
WK | dim × dim_head | 42× 16 + 16 | 688
WV | dim × dim_head | 42× 16 + 16 | 688
Wo | dim_head ∗ n_head × dim | 96× 42 + 42 | 4,074
Layer norm | dim × 2 | 42× 2 + 2 | 86
Linear | dim × dim ∗ 4 | 42× 168 + 168 | 7,224
Linear | dim ∗ 4× dim | 168× 42 + 42 | 7,098

Linear | dim × dim ∗ 2 | 42× 84 + 84 | 3,612
Linear | dim × 2 | 84× 2 + 2 | 170

Data selection and evaluation

A myriad of human ribosome profiling data sets were used
covering a variety of tissues and treatment methods.The full
transcriptome constitutes of 251,121 transcripts, with a total
of 431,011,438 transcript positions. the annotated TISs from
Ensembl GRCh38 version 107 are utilized as the positive set.
In contrast to the annotations used to label the data, not all an-
notated TIS are expressed in each of the data sets. Therefore,
a substantial set of positively annotated TISs cannot be pre-
dicted as no expression signal is present. While this affects
the maximum performance tools can achieve on specific data
sets, it does not affect our ability to compare tools based on
their respective performances. Indeed, higher performances
still indicate one tool to have a better capacity at detecting

TISs from the ribosome profiling data. The training, valida-
tion and test sets are constructed from transcripts grouped
per chromosome to ensure all transcript isoforms are present
within the same set. Models are trained on the training set
until a minimum loss on the validation set is reached, where
results are acquired from the test set.

Results
Read length information can be leveraged to
improve performances.
Today, the length of mapped reads serves as an important
factor to determine the positioning of the ribosome protected
fragments within the ribosome complex (Dunn and Weissman
2016). Existing methods evaluate the correlation between
read length and the alignment of these reads with respect to
the reading frame of existing coding sequences. This infor-
mation is used by existing methods to offset the 5’ mapping
positions of existing reads when aggregating information
from the variably sized mapped reads.

Here we show that the incorporating read length informa-
tion, rather than aggregating this information by adjusting
mapped positions, improves performances for RIBO-former
(Table 2). Except for the few hundred weights used to com-
pute the input vector, all approaches apply the same model
architecture and, thus, number of model parameters (∼220K).
The difference between performances for different data sets
reflects the effect of number of mapped reads (Table 1). No-
tably, as including read length information expands the num-
ber of features used to calculate the input vector embeddings,
having a higher number of mapped reads influences the boost
in performances when applying read length information (e.g.,
SRR2732970, SRRSRR2733100).

Pre-training improves both performances and
training times
Ribosome profiling data is influenced by various factors, such
as lab protocols, treatments, sample input material (cell types
and/or species) and sequencing depth. By pre-training the
model on a multitude of ribosome profiling data sets, it is able



Table 3: Benchmark performances on detecting annotated coding sequences.. Previous tools only evaluate a select number
of ORFs/TISs, where a one-by-one comparison between these tools and RIBO-former is given. ROC: area under the receiver
operating characteristic curve, PR: area under the precision-recall curve.

PRICE RIBO-former RiboTish RIBO-former
Data set ORFs CDSs ROC PR ROC PR ORFs CDSs ROC PR ROC PR

SRR1802129 6,417 352 0.786 0.159 0.968 0.639 646,112 50,144 0.583 0.105 0.932 0.527
SRR2433794 42,978 2,534 0.693 0.185 0.961 0.639 1,020,518 69,479 0.556 0.078 0.941 0.558
SRR2732970 109,391 7,478 0.635 0.276 0.965 0.720 1,039,658 69,286 0.572 0.078 0.915 0.526
SRR2733100 122,202 4,735 0.562 0.153 0.977 0.694 1,002,275 67,270 0.565 0.077 0.919 0.535
SRR2954800 7,654 637 0.726 0.170 0.935 0.604 442,725 34,448 0.532 0.085 0.931 0.544
SRR8449577 15,520 1,027 0.728 0.207 0.958 0.650 842,566 60,171 0.574 0.089 0.945 0.568
SRR9113067 11,944 457 0.781 0.195 0.967 0.565 759,182 55,710 0.553 0.086 0.924 0.472
SRR11005875 13,175 1,477 0.721 0.246 0.943 0.678 1,006,709 71,656 0.566 0.085 0.944 0.563

Rp-Bp RIBO-former Ribotricer RIBO-former
Data set ORFs CDSs ROC PR ROC PR ORFs CDSs ROC PR ROC PR

SRR1802129 269,574 28,401 0.579 0.143 0.928 0.578 238,095 23,206 0.569 0.111 0.966 0.709
SRR2433794 453,936 40,037 0.564 0.108 0.945 0.621 506,515 33,181 0.594 0.078 0.974 0.692
SRR2732970 485,714 40,407 0.622 0.118 0.921 0.583 487,689 28,823 0.557 0.065 0.971 0.687
SRR2733100 472,020 39,761 0.611 0.115 0.924 0.593 171,597 4,022 0.603 0.034 0.964 0.447
SRR2954800 237,475 23,265 0.536 0.112 0.922 0.556 155,014 15,248 0.586 0.122 0.959 0.679
SRR8449577 369,043 34,404 0.578 0.125 0.946 0.622 363,661 28,043 0.592 0.093 0.973 0.706
SRR9113067 372,811 34,991 0.547 0.109 0.917 0.507 195,331 15,107 0.593 0.099 0.962 0.646
SRR11005875 446,978 41,421 0.566 0.113 0.947 0.627 439,689 34,384 0.582 0.091 0.971 0.694

to discover general RIBO-seq correlations that are shared be-
tween different data sets. A selection of eight complementary
ribosome profiling experiments were selected to pre-train the
model (Table 1).

Two types of pre-trained models have been evaluated. The
first set of pre-trained models is optimized to detect TISs
(supervised), following an identical learning objective as out-
lined above. The second set of models is optimized using
a self-supervised learning setting, where labels are derived
from the input data. This is a popular approach in natural
language processing, producing models capable of handling a
variety of tasks, In this setting, random locations of the input
are masked, where the model is tasked to impute the pres-
ence of ribosome reads at these positions. Performances are
evaluated for models incorporating read length information.

The results show that pre-training a model on a variety
of data improves performances for the supervised learning
objective (Table 2) Notably, training times are drastically re-
duced on all evaluated data sets, where fine-tuning of models
on the pre-trained model reaches convergence on the valida-
tion set after only one training epoch (versus 10 epochs).

RIBO-former outperforms existing tools by a large
margin
Several tools exist that utilize ribosome profiling data in
various manners to delineate translated ORFs. Tools like Ri-
boTaper (Calviello et al. 2016), riboHMM (Raj et al. 2016b),
and Scikit-ribo (Fang et al. 2018) are packages that combine
both RNA-seq and Ribo-seq data to achieve this goal. Other
software, such as PROTEOFORMER (Crappé et al. 2015)
and RiboTISH (Zhang et al. 2017), can leverage information
from the combination of cycloheximide and lactimidomycin

Figure 2: Benchmark performances on detecting anno-
tated coding sequences. Figures are derived from the data
listed in Table 3. Previous tools only evaluate a select num-
ber of ORFs, where a one-by-one comparison between these
tools and RIBO-former is given. ROC: area under the receiver
operating characteristic curve, PR: area under the precision-
recall curve.



or harringtonine treated data sets.
In this study, we benchmark RIBO-former with PRICE

(Erhard et al. 2018), Rp-Bp (Malone et al. 2017), Ribo-
TISH (Zhang et al. 2017), and Ribotricer (Choudhary, Li,
and D. Smith 2020), using the annotated coding sequences
by Ensembl as the positive set. These tools were selected
based on various factors: previously reported benchmarks,
the presence of continued support for a tool through software
updates and code maintenance, and their adoption by the com-
munity (Xiao et al. 2018; Choudhary, Li, and D. Smith 2020;
Malone et al. 2017). RIBO-former predicts translated TISs
along the full transcriptome, from which translated ORFs are
derived. Unlike RIBO-former, existing methods are designed
to only evaluate a subset of candidate ORFs. As such, only
one-by-one comparisons between each tool and RIBO-former
are possible, where only the positions included by each tool
are used to calculate the performance scores. Performances
between existing tools cannot be compared, as different sets
of evaluated ORFs decide the complexity of the benchmark
and, therefore, the resulting performance metric. Importantly,
post-processing steps that further filter the output predictions
of all tools have been omitted, as these steps further limit the
number of evaluated samples and do not represent the predic-
tive performance of the statistical methods incorporated for
each tool. Examples of such post-processing steps include
the selection of only the longest ORFs on each transcript.

We show RIBO-former to outperform all other tools on all
evaluated data sets (Table 3, Figure 2). Here, RIBO-former
especially contrasts itself from existing approaches when it
is evaluated on large sets featuring few positive samples.

Discussion
In this paper, we propose RIBO-former, an attention-based
tool for detecting translated ORFs from ribosome profiling
read information along the transcript. We show our method
to substantially outperform previous tools, and believe our
tool to bring various improvements. (i) The tool relies solely
on the arrangement of ribosome-protected fragments to de-
tect TISs. Other information, such as sequence information
(e.g., start codon, stop codon) or information on the proper-
ties of the open reading frame (e.g., length, number of reads
mapped) could perpetuate potential biases if used as input
features of statistical methods. If necessary, filtering based on
these properties can always be achieved as a post-processing
step, rather than a pre-processing step. (ii) The tool omits
pre-processing steps that re-map reads as a function of their
read length. As not all read lengths map to a single reading
frame, we know this step constitutes a loss of information or
introduces bias. We show RIBO-former to achiev higher per-
formances when parsing read length information as is. These
results showcase the strength of deep learning approaches
to do automated feature extraction. (iii) The mapping of the
full transcriptome allows for modular post-processing steps
where specific sites of interest are guaranteed to be evaluated.
Filters based on number of reads per transcript, sequence
information, and ORF properties can be applied on the full
set in line with the objectives of the user. Furthermore, evalu-
ating the full transcriptome facilitates future benchmarking.

(iv) The application of state-of-the-art machine learning mod-
els and the incorporation of ribosome length information
outperforms all previously designed tools for all evaluated
data sets. Importantly, the tool was shown to work well with
a variety of data, covering a wide range of sequencing depths,
sample types, and antibiotic treatments applied. We find
these observations to support the utility of the tool. Although
a focus was set on the human genome, RIBO-former can be
applied across different species, and future findings might
even prove the inclusion of data sets from multiple species to
be a valid strategy to create a pre-trained model.

When running RIBO-former on new data, it fine-tunes
pre-trained models on two non-overlapping folds, where pre-
dictions are obtained on the test sets covering the full tran-
scriptome. As such, the tool relies on the availability of a
graphical processing unit from the user, which can serve as a
limiting factor for the adoption of the tool. The use of pre-
trained models alleviates the requirement of computational
resources, as training times are reduced to a single epoch ( 15
min. on RTX3090). The accessibility of cloud computing
solutions can further provide support for the application of
graphical processing unit-powered algorithms in labs that are
otherwise lacking support of local hardware.

Future work on RIBO-former will focus on further improv-
ing the tool through various readily-available post-processing
steps. To illustrate, we found RIBO-former to suffer from
from low accuracy for transcripts featuring a lower number
of mapped reads, where the tool sometimes misses existing
TISs by a few nucleotides. Post-processing steps can detect
and correct likely inaccuracies by evaluating model scores
and neighboring codon prevalence. Other post-processing
strategies can introduce filters based on read count and ORF
properties, such as start codon and ORF lengths.

RIBO-former has been designed to complement TIS trans-
former (Clauwaert et al. 2023), a tool previously designed
by our team that applies transcript sequence information to
delineate coding sequences on the transcriptome. With RIBO-
former achieving high performances solely using ribosome
profiling information, we believe the tool to be a promising
new asset with which the precise detection of novel translated
non-canonical ORFs can be achieved.

Data availability
All the data, scripts and model outputs are available for
public use on GitHub (https://github.com/jdcla/
RIBO_former_paper) and Zenodo (https://doi.
org/10.5281/zenodo.8059446). The RIBO-former
is also available on GitHub https://github.com/
jdcla/RIBO_former and PyPI (https://pypi.
org/project/transcript-transformer/).
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