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Abstract

DNA breathing dynamics—transient base-pair opening and
closing due to thermal fluctuations—are vital for processes
like transcription, replication, and repair. Traditional mod-
els, such as the Extended Peyrard-Bishop-Dauxois (EPBD),
provide insights into these dynamics but are computationally
limited for long sequences. We present JAX-EPBD, a high-
throughput Langevin molecular dynamics framework lever-
aging JAX for GPU-accelerated simulations, achieving up to
30x speedup and superior scalability compared to the original
C-based EPBD implementation. JAX-EPBD efficiently cap-
tures time-dependent behaviors, including bubble lifetimes
and base flipping kinetics, enabling genome-scale analyses.
Applying it to transcription factor (TF) binding affinity pre-
diction using SELEX datasets, we observed consistent im-
provements in R2 values when incorporating breathing fea-
tures with sequence data. Validating on the 77-bp AAV P5
promoter, JAX-EPBD revealed sequence-specific differences
in bubble dynamics correlating with transcriptional activity.
These findings establish JAX-EPBD as a powerful and scal-
able tool for understanding DNA breathing dynamics and
their role in gene regulation and transcription factor binding.

Introduction
DNA breathing dynamics, characterized by the transient
opening and closing of base pairs due to thermal fluctua-
tions, play a crucial role in fundamental biological processes
such as transcription initiation, replication, and DNA re-
pair (Watson et al. 2013). These local strand separations fa-
cilitate access to genetic information and are influenced by
thermal energy that disrupts the weak hydrogen bonds be-
tween complementary bases (Guéron, Kochoyan, and Leroy
1987).

To quantitatively study DNA breathing, theoretical mod-
els like the Extended Peyrard-Bishop-Dauxois (EPBD)
model have been developed (Alexandrov et al. 2009; Peyrard
and Bishop 1989). The EPBD model extends the original
PBD model by incorporating sequence-specific stacking po-
tentials, allowing for the analysis of sequence-dependent
effects on DNA dynamics. This model provides single-
nucleotide resolution and captures the nonlinear, highly co-
operative nature of DNA breathing, enabling the detection
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of effects from even single base pair changes (Alexandrov
et al. 2009). Traditional thermodynamic models, while use-
ful for predicting melting temperatures, struggle to account
for deviations in melting behavior observed in homoge-
neous and periodic DNA sequences (SantaLucia Jr 1998;
Ares et al. 2005). Dynamic models like EPBD offer advan-
tages by capturing long-range effects and providing insights
into the initial stages of DNA melting, which are relevant
for processes like protein binding and transcription initia-
tion (Peyrard 2004).

Previously, we used Markov Chain Monte Carlo (MCMC)
simulations in the pyDNA-EPBD framework to examine
DNA breathing dynamics (?). While effective for sampling
equilibrium properties, MCMC methods do not provide tem-
poral information about the dynamics, such as bubble life-
times and the kinetics of base pair opening (Frenkel and
Smit 2002). To address this limitation, we have transitioned
to Langevin molecular dynamics (LMD) simulations us-
ing the JAX library (Bradbury et al. 2018). LMD incor-
porates both deterministic forces from the potential energy
landscape and stochastic forces representing thermal fluc-
tuations (Allen and Tildesley 1989), allowing us to cap-
ture time-dependent behavior and study kinetic properties of
DNA breathing. Leveraging JAX’s just-in-time compilation
and GPU acceleration, we implemented a highly scalable
LMD simulation framework optimized for performance.
This advancement enables extensive simulations of longer
DNA sequences and the capture of rare breathing events
with high temporal resolution.

In this work, we detail our LMD simulation framework
using JAX, compare its performance and advantages over
the MCMC approach, and discuss the implications of our
findings for understanding DNA breathing dynamics and
their role in biological processes.

The Langevin-EPBD Model
The EPBD model is a dynamic, highly nonlinear system
that describes the transverse opening motions of the comple-
mentary strands of double-stranded DNA, known as DNA
breathing dynamics (Peyrard and Bishop 1989). This model
allows for the existence of breathing solutions—transient
but relatively long-lasting openings of the DNA double he-
lix—which are closely linked to the local bending tendency
of the DNA. The trajectories derived from the EPBD model



provide detailed information about the lifetimes of these
transient DNA openings, known as bubbles—a level of de-
tail not accessible through purely thermodynamic calcula-
tions (Alexandrov et al. 2006). By explicitly considering sol-
vent conditions such as salt concentration, temperature, and
DNA twist, the EPBD model can reveal bubbles with ex-
tended lifetimes (Alexandrov et al. 2010a,b). Another key
advantage of the EPBD model is its resolution at the single-
nucleotide level. In contrast, thermodynamic models typi-
cally require averaging over windows of 100–500 base pairs
to calculate property profiles, which can obscure differences
between closely related sequences. The EPBD model avoids
this averaging, enabling the detection of effects from even
single base pair changes.

The EPBD model is a quasi-two-dimensional nonlinear
framework designed to describe the transverse opening mo-
tion of the complementary strands of double-stranded DNA.
It accounts for the distinction between the two sides (right
un and left vn) of the DNA double strand, offering a more
nuanced representation of its dynamics. The Hamiltonian
potential surface of the EPBD model is characterized by the
summation of two key energy terms: the Morse potential and
the stacking energy of the two neighboring base pairs (bps)
at every bp of the input DNA fragment, see equation (1).

Mathematically, the total potential energy is expressed as:

VEPBD =

N∑
n=1

[U(un, vn) +W (un, un−1, vn, vn−1)] (1)

The Morse potential U(un, vn) incorporates the hydro-
gen bonds between two bases belonging to opposite strands
of the DNA. It also accounts for the repulsive interactions
of the phosphate groups and the effects of the surrounding
solvent. The parameters Dn and an in the Morse potential
are specific to the n-th base pair, reflecting whether it is an
A–T or G–C pair. This potential is given by:

U(yn) = Dn

(
e−anyn − 1

)2
, (2)

where:

• un and vn are the transverse displacements of the com-
plementary bases in the n-th base pair.

• yn =
un − vn√

2
is the relative distance between the bases.

• Dn is the bond dissociation energy, and an determines
the sharpness of the potential well.

This term models the balance between attractive forces
(hydrogen bonding) and repulsive forces (phosphate inter-
actions), capturing the effect of thermal fluctuations.

The stacking potential W (un, un−1, vn, vn−1) describes
the interaction between neighboring base pairs. It depends
on the status variables of adjacent base pairs and accounts
for the mechanical coupling between them. This term is ex-
pressed as:

W [un;un−1; vn; vn−1] =
Kun,n−1

2
(un − un−1)

2

+
Kvn,n−1

2
(vn − vn−1)

2

+
ρ

4
e−β[(un−vn)+(un−1−vn−1)]

×
(√

Kun,n−1(un − un−1)−√
Kvn,n−1

(vn − vn−1)
2

(3)

where:

• un and un−1 are the positions of the n-th and (n− 1)-th
bases along one strand.

• vn and vn−1 are the corresponding positions on the com-
plementary strand.

• Kun,n−1
and Kvn,n−1

are the coupling constants deter-
mining the stiffness of the interactions between neigh-
boring bases.

• ρ and β are parameters related to the strength and range
of the interactions.

This term plays a critical role in maintaining the structural
stability of the DNA double helix by ensuring cooperative
behavior between adjacent base pairs.

In the EPBD model, the thermal dynamics of the n-th base
pair are obtained through the Langevin equation:

mÿn = − U ′(yn)−
∂W

∂yn
−mγẏn + ξn(t), (4)

where:

• m is the mass of the base pair.
• U ′(yn) is the derivative of the Morse potential with re-

spect to yn.

•
∂W

∂yn
represents the derivative of the stacking potential

with respect to yn, including contributions from neigh-
boring base pairs.

• γ is the friction coefficient.
• ξn(t) is a random force representing thermal fluctuations,

modeled as white noise sampled from a standard Gaus-
sian distribution.

We simulate the dynamics of double-stranded DNA at
T = 310K by numerically integrating the stochastic differ-
ential equation (4) with periodic boundary conditions using
the Langevin dynamics method.

Langevin dynamics
Langevin dynamics is a method used in molecular dynamics
simulations to model the interaction between a system of in-
terest and its surrounding environment, such as a solvent or
heat bath. It introduces stochastic and frictional forces into
Newton’s equations of motion to account for thermal fluc-
tuations and energy dissipation. This method is particularly



effective for studying systems at finite temperatures and ex-
ploring thermodynamic properties.

The general Langevin equation describes the Brownian
motion of a particle:

m
dv

dt
= −λv + η(t), (5)

where:

• v is the velocity of the particle.
• λ is the damping coefficient, representing the frictional

force due to the surrounding medium.
• m is the mass of the particle.
• η(t) is a stochastic force (random noise) representing

collisions with fluid molecules.

The random force η(t) satisfies the statistical properties:

⟨ηi(t)ηj(t′)⟩ = 2λkBTδijδ(t− t′),

where:

• kB is the Boltzmann constant.
• T is the temperature of the system.
• δij is the Kronecker delta.
• δ(t − t′) is the Dirac delta function, indicating that the

force at time t is uncorrelated with the force at any other
time.

In molecular dynamics, the Langevin equation is adapted
to describe the motion of particles in a system:

mi
d2ri
dt2

= Fi − γimi
dri
dt

+ ξi(t), (6)

where:

• Fi is the deterministic force acting on particle i, derived
from the system’s potential energy.

• γi is the friction coefficient for particle i, representing
energy dissipation into the environment.

• ξi(t) is the stochastic force, with the same Gaussian
properties as in the original Langevin equation.

Relating this to our EPBD model by comparing equa-
tions (4) and (6), we identify:

−U ′(yn)−
∂W

∂yn
= Fn,

mÿn = m
d2yn
dt2

,

ξn(t) = ξn(t). (7)

The Langevin equation allows the simulation of time-
dependent behavior, showing how the DNA base pairs
evolve under the combined effects of the EPBD potential,
thermal fluctuations, and damping. The simulation involves
solving the second-order ordinary differential equation (4).
We do this using a numerical method called the second-order
Runge-Kutta (RK2) (Ixaru et al. 2004) method. This numer-
ical approach approximates the time evolution of base pair

positions under the influence of the forces described by the
EPBD model and the stochastic and damping terms from the
Langevin equation.

To calculate the average displacement or opening profile
for a given DNA sequence at a specific temperature, we uti-
lize the EPBD model summarized in Algorithm 1 and illus-
trated in Figure 2. This involves solving for the relative dis-
tance yn for each base pair. Subsequently, each base’s dis-
placements yn at selected time intervals are recorded. For
each DNA sequence, we run at least 500 independent sim-
ulations to derive the average displacement/opening profile.
Each simulation trajectory involves starting from a station-
ary position and numerically integrating equation (4) for a
specified number of steps.

High-Throughput Langevin EPBD

Algorithm 1: RK2 Method for Solving the PBD Model
Equations of Motion

1: Input:
2: Initial conditions: yn(0), vn(0)
3: Time step: ∆t
4: Total time steps: Nsteps
5: Model parameters: m, γ, ξn(t), Dn, an, k, ρ, β
6: Functions: V ′(yn),W

′(yn+1, yn)
7: Output:
8: Time evolution of yn(t) and vn(t)
9: Initialize yn(0) = y0n and vn(0) = v0n

10: Set time step ∆t and total steps Nsteps
11: Precompute forces based on initial conditions
12: for each time step t = 0 to Nsteps do
13: for each base pair n do
14: First half-step:
15: Update displacement yn for the half time step
16: Update velocity vn for the half time step
17: Second full-step:
18: Update displacement yn for the full time step using

the intermediate values
19: Update velocity vn for the full time step using the

intermediate values
20: end for
21: end for
22: Return: Time evolution of yn(t) and vn(t)

Numerical integration methods, such as those used in
Langevin dynamics, require more computational steps and
necessitate more independent simulations than MCMC
methods to achieve the desired outputs. Following the im-
plementation described in (Alexandrov et al. 2006), we em-
ployed JAX (Bradbury et al. 2018) as our implementa-
tion framework, in contrast to the C implementation used
in (Alexandrov et al. 2006) or the native python implemen-
tation in (Kabir et al. 2023)

Although certain operations can be computationally ex-
pensive in JAX, the Accelerated Linear Algebra (XLA)
framework significantly enhances computational efficiency
by serving as a performance-optimizing compiler. XLA



Figure 1: Schematic representation of the acceleration ap-
proach for JAX-EPBD using GPU parallelism. Multiple se-
quences are processed concurrently in batches on the GPU,
while post-processing and data collection are performed on
the CPU.

Figure 2: Langevin Dynamics Workflow in JAX-EPBD
Framework

transforms high-level mathematical expressions into opti-
mized kernels tailored for diverse hardware platforms, in-
cluding GPUs. Additionally, JAX provides optimized com-
putations for GPU programming models. Thus, vectorized
code written in JAX can execute faster than code in other
programming frameworks that operate solely on CPUs.

We refer to our Langevin-EPBD implementation using
JAX as JAX-EPBD. The strength of JAX-EPBD lies in its
unparalleled ability to process multiple sequences concur-
rently, a capability critical for efficient Langevin simulations

on GPUs. Unlike other popular frameworks such as PyTorch
or TensorFlow, which typically support only a single in-
stance of simulation on GPUs at a time due to constraints
in their design, JAX uniquely enables concurrent simula-
tion instances. This is achieved through its highly optimized
vmap (vectorized mapping) and pmap (parallel mapping)
functions, which allow for seamless vectorization and paral-
lel execution across GPU cores. By leveraging vmap, JAX-
EPBD processes batches of sequences simultaneously, en-
suring that each sequence is treated independently while
sharing GPU resources efficiently. Furthermore, pmap en-
ables scaling across multiple devices when required, making
the implementation highly adaptable to various computa-
tional demands. The software accepts batches as input, with
the batch size being user-defined and adjustable based on the
sequence length and available GPU memory. Each batch of
sequences is processed in parallel on GPU cores.

We employ jax.lax.scan as our primary
loop construct instead of alternatives such as
jax.lax.fori loop or jax.lax.while loop,
due to its superior compatibility with just-in-time jit
compilation. Unlike other constructs, jax.lax.scan
is explicitly designed to facilitate efficient, parallelizable
execution of iterative computations. By structuring the com-
putation as a statically unrolled loop, jax.lax.scan not
only minimizes overhead associated with dynamic control
flow but also allows JAX’s jit compiler to optimize the
entire computation graph in a single pass. This approach
ensures that memory usage is reduced by efficiently han-
dling intermediate states, a critical advantage when working
with large datasets or long simulation runs. Furthermore,
jax.lax.scan inherently supports reverse-mode au-
tomatic differentiation over iterative processes, making it
particularly well-suited for gradient-based optimization
tasks.

Figure 1 illustrates the schematic of our acceleration ap-
proach for Langevin-EPBD. All post-processing and data
collection were performed on the CPU.

Results and Discussion
First, we present the details of the datasets and simulation
configurations used throughout the study. Next, we explore
various aspects of DNA breathing dynamics, including base
pair coordinates, base flipping, bubble formation, and the q-
factor. We also highlight the utility of these breathing char-
acteristics in predicting the binding specificity of Transcrip-
tion Factors (TF) to DNA. Finally, we analyze the runtime
performance of our JAX-EPBD model as a function of the
number of base pairs in each DNA sequence.

DataSets
We use several datasets to run the simulations and evalu-
ate the DNA breathing dynamics features. This section dis-
cusses the datasets used in the study, which are essential for
understanding the various utilities and perspectives of the
Langevin-EPBD model.

Adeno-associated virus (AAV) P5 promoter: Experi-
mental evidence suggests that spontaneous double-strand



DNA (dsDNA) separation at the transcriptional start site is
a critical requirement for transcription initiation in several
promoters (Alexandrov et al. 2009). This phenomenon, of-
ten referred to as DNA “breathing” or “bubble” formation,
plays a pivotal role in creating an open complex that allows
transcription machinery to bind and initiate RNA synthesis.

Figure 3: The sequence of Adeno-associated virus (AAV) P5
promoter. The mutation region is marked as +1 in the both
wt and mt type)

To investigate this process using our Langevin-EPBD
model, we focus on the strand separation dynamics of the
77-base-pair-long AAV P5 promoter. This sequence serves
as a key example of a promoter region where bubble dynam-
ics are thought to play an essential role in transcriptional reg-
ulation. In addition to the wild-type promoter sequence, we
study a control non-promoter sequence of the same length
(77 bp). This mutant-type (mt) sequence contains a single
mutation that alters the sequence’s ability to form bubbles,
and it is derived from the published human collagen intron
sequence (NW 927317). In figure 3 we present both the vari-
ants: wt and mt of P5 promoter; the mutation position is also
highlighted.

SELEX: We utilize ground truth binding affinities ob-
tained from high-throughput SELEX (HT-SELEX) exper-
iments, focusing on specificity information for 215 tran-
scription factors (TFs) from 27 families. The dataset, pre-
processed by Yang et al. (Yang et al. 2017), includes TF-
DNA binding specificities for all DNA sequences of length
M (M-words) and underwent several filtering steps to en-
sure high variability, deep read coverage, selection of core
motifs, and exclusion of infrequent M-words. This resulted
in a comprehensive set of 1,788,827 sequences with lengths
varying from 9 to 15 nucleotide base pairs. The affinity dis-
tribution shows similar variance across different TFs but
shares the same maximum value, posing a significant chal-
lenge for computational learning models.

Langevin-EPBD Simulation
We use the JAX-EPBD framework (see Figure 2) to monitor
DNA breathing dynamics for a given DNA sequence. To en-
sure statistical significance, we perform at least 1,000 inde-
pendent simulations with varying initial conditions (random
seeds) at a constant temperature of 310 K.

Each simulation consists of:
1. Pre-heating Steps: A preheating period of 200

picoseconds (ps) allows the system to stabilize
and remove initial condition artifacts.

2. Simulation Phase: We record dynamics for 1
nanosecond (ns) with a time step of 1
femtosecond (fs). These durations are cho-
sen based on convergence tests to adequately sample
DNA breathing events. Other simulation parameters
follow Alexandrov et al. (Alexandrov et al. 2006).

During simulations, base pair positions and velocities are
updated using Langevin equations of motion, incorporat-
ing both deterministic forces from the EPBD potential and
stochastic thermal fluctuations (Allen and Tildesley 1989).
The integration time step is set to 0.00002 to balance ac-
curacy and computational efficiency. We track the displace-
ment yi of each base pair i from its equilibrium position,
indicating hydrogen bond stretching and DNA bubble for-
mation. By averaging over multiple simulations, we obtain
the average displacement profile ⟨yi⟩, which is sensitive to
single base pair substitutions and does not require window
averaging. For short DNA sequences, adding flanking re-
gions is crucial to reflect the native base pair context, mit-
igate boundary effects from terminal base pairs, and satisfy
the model’s minimum sequence length requirements. Our
Langevin dynamics approach within the JAX-EPBD frame-
work efficiently captures detailed, sequence-specific DNA
breathing dynamics. By averaging numerous trajectories, we
achieve precise profiles that enhance our understanding of
the relationship between DNA structure, dynamics, and bi-
ological function. We will describe the DNA breathing dy-
namics below:

Figure 4: We visually show that average coordinate distance
profile obtained by Langevin-EPBD is similiar to that of
pyDNA-EPBD (Kabir et al. 2023)

Breathing dynamics: Average coordinate distance pro-
file:

Average coordinates refer to the averaged transverse dis-
placements, ⟨yi⟩, which are the displacements yi averaged
over thermal fluctuations. The displacement profile ⟨yi⟩ is
a distinct characteristic of DNA breathing dynamics, quan-
tifying the extent to which each base pair in the DNA se-
quence is “open” in equilibrium. This indicates the degree
to which hydrogen bonds between base pairs are stretched
due to thermal fluctuations.

Alexandrov et al. (Alexandrov et al. 2009) revealed that
the simulation distribution correlates with significant differ-
ences in the transcriptional activity of promoters. To vali-
date our approach, we analyzed the AAV P5 wild-type and
mutant promoter sequences using the JAX-EPBD model.
Figure 5f (right panel) displays the average displacements
around base pair 50 for the wild-type promoter (blue) and a
transcriptionally silent AG to TC mutant (red). These results
are visually consistent with those reported by Alexandrov
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Figure 5: DNA Breathing Dynamics and Analysis. (a) The primary governance of macromolecules is through hydrogen bonds (H-bonds). (b)
Representation of a single base “flipping out of the stack,” showcasing a phenomenon known as DNA breathing. (c) Illustration of consecutive
base pairs breaking the H-bonds and opening simultaneously referred to as DNA bubbles. (d-e) 3D surface plots highlighting the change in
bubble intensity across varied lengths and base pairs (bps) for threshold value 1.5 under two conditions: P5 wild (d) and P5 mutant (e).
(f-g) Average Coordinates profiles for AAV P5 wild (f) and mutant-promoter (g) sequences at individual base pairs, with the orange vertical
block indicating nucleotide substitutions from AG to TC at the 50 and 51 positions (zero-indexed). (h) Bubble lifetime for certain threshold
as a function of bubble-length. The numbers in red indicates the distance from the mutation site in bp. +1 is the mutation site. For all the
experiments, we set a minimum of 1000 Langevin simulations using various initial conditions, setting the temperature to 310 Kelvin and
employing 200ps preheating steps followed by 1s post-preheating with 1fs time-step.

et al. (Alexandrov et al. 2009) and Kabir et al. (Kabir et al.
2023) (see figure 4). The average displacement magnitude
in the double helix width can influence the binding affinity
of transcription factors.

Breathing dynamics: Base Flipping Probability:
Base flipping refers to a specific type of base movement

in DNA where one or both bases in a base pair flip out
of the helical stack, exposing them to the surrounding en-
vironment. This process is crucial for various biological
functions, including DNA repair, replication, and transcrip-
tion factor (TF) binding (Nowak-Lovato et al. 2013). The
propensity for flipping characterizes this transition by deter-
mining the fraction of disrupted hydrogen bonds (openings)
between complementary nucleotides. Specifically, it quan-
tifies the fraction of base pairs (bps) whose displacement
exceeds a certain threshold distance, as a function of tem-
perature.

We computed the average flipping profile using our JAX-
EPBD model by calculating the probability of a base pair
being flipped throughout the simulation steps. A base pair is
considered flipped if the separation between its bases equals
or exceeds a predefined threshold distance (measured in Å).
To accurately capture the flipping behavior, we collected
flipping profiles at five different thresholds ranging from

0.7071, Å to 3.5355, Å, in increments of 0.7071, Å. Main-
taining high floating-point precision is important to obtain
accurate distribution profiles.

Figure 5g presents example flipping profiles for the wild-
type and mutant adeno-associated virus (AAV) P5 promoter
sequences at a threshold of 1.4142Å. The results show that
the transcriptionally silent AAV P5 mutant is less prone to
base pair openings at and around the mutation position at
this threshold compared with its wild-type counterpart. This
reduced propensity for flipping may contribute to the mu-
tant’s transcriptional inactivity.

Breathing dynamics: Bubbles:
DNA bubble probability refers to regions within the DNA

double helix where the strands temporarily separate due to
thermal motion. These transient denaturation bubbles are
crucial for processes such as transcription initiation, replica-
tion, and transcription factor (TF) binding (Alexandrov et al.
2009; Choi et al. 2004). The formation of these bubbles is
a stochastic process, especially in the presence of a thermal
bath modeled by random forces (Nowak-Lovato et al. 2013).

We define the probability of a DNA bubble, Pn(l, tr),
based on its starting base pair index n, length l (in base
pairs), and displacement threshold tr (in ). This probability
is expressed as:
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Figure 7: Runtime and speedup comparison between Jax-
EPBD and C-EPBD for sequence length 100 across various
batch sizes.

Model Mean Standard Deviation
Jax-EPBD 7.2092 0.0135
C-EPBD 67.8000 0.1315

Table 1: Mean and standard deviation of runtime for Jax-
EPBD and C-EPBD.

Pn(l, tr) =
1

ts ·M

M∑
k=1

Qk(n,l,tr)∑
q=1

∆t[qk(n, l, tr)] (8)

where:
• M is the total number of simulation runs (typically M ≈
1000).

• ts is the duration of a single simulation run, approxi-
mately 1− 2 nanoseconds (ns).

• Qk(n, l, tr) is the number of bubbles in the k-th simu-
lation starting at base pair n, spanning l base pairs, and
exceeding displacement tr.

• ∆t[qk(n, l, tr)] is the existence time of the q-th bubble.

In the presence of the thermal bath, modeled by random
forces, the creation of a bubble is a stochastic process (?).
Unlike traditional MCMC methods, Langevin dynamics al-
low for time-dependent analyses, enabling the computation
of bubble lifetimes. We compute average bubble life time as
τLifetime, as:

τLifetime =

〈∑Qk(n,l,tr)
q=1 ∆t [qk(n, l, tr)]

Qk(n, l, tr)

〉
M

(9)

Using our Langevin-EPBD simulation tool, we analyzed
DNA bubbles with lengths ranging from three to twenty base
pairs and displacement thresholds from 0.5, Å to 15.0, Å
in increments of 0.5, Å. High floating-point precision was
maintained to ensure accurate distribution profiles.

In Figures 5d and 5e, we plot the bubble probability for a
given threshold. Our results confirm previous findings (Choi
et al. 2004; Alexandrov et al. 2006, 2009) that there is a
significant difference in bubble probability at the mutation
site between the two sequences, which corresponds to the
dramatic difference in the transcriptional activity of the pro-
moters. In Figure 5h, we present the average bubble lifetime
for bubbles exceeding a certain amplitude as a function of
bubble length. Consistent with earlier reports (Choi et al.
2004; Alexandrov et al. 2009), the P5 promoter displays a
longer lifespan of bubbles at the mutation region.

Benchmark Results
In this section, we benchmark the performance of Jax-EPBD
against the original C-based implementation (C-EPBD). All
experiments were conducted on a computational node com-
prising 128 processors and an A100 GPU. The benchmark-
ing experiments include two key scenarios: (1) varying se-
quence lengths for a fixed batch size, and (2) varying batch
sizes for a fixed sequence length. These experiments aim
to evaluate both runtime efficiency and scalability across
different configurations. To establish a baseline compari-
son, we first evaluated the runtime for processing a sin-
gle random sequence of length 100 across 100 simulations.
The results are summarized in Table 1. Jax-EPBD achieved
a significantly lower mean runtime of 7.21 seconds, com-
pared to 67.80 seconds for C-EPBD, demonstrating approx-
imately 9.4x speedup. Furthermore, Jax-EPBD exhibited
greater consistency with a standard deviation of only 0.0135
seconds, compared to 0.1315 seconds for C-EPBD.

Next, we analyzed the runtime for a fixed batch size of 1
across varying sequence lengths, as illustrated in Figure 6.
Jax-EPBD consistently demonstrated lower runtimes com-
pared to C-EPBD, even as sequence lengths increased. No-
tably, the speedup metric—defined as the ratio of C-EPBD
runtime to Jax-EPBD runtime—highlighted a growing per-
formance advantage of Jax-EPBD for longer sequences.

To evaluate the impact of increasing batch size, we com-
pared the runtime for a fixed sequence length of 100 across
various batch sizes, as presented in Figure 7. Jax-EPBD ex-
hibited significantly lower runtimes than C-EPBD, with con-
sistent scaling as batch size increased. In contrast, C-EPBD



showed progressively higher runtimes and became infeasi-
ble for batch sizes beyond 40 due to resource limitations.
The speedup metric further emphasized the efficiency gains
of Jax-EPBD, particularly at larger batch sizes, where its
performance remained stable. For example, at a batch size of
40, Jax-EPBD achieved a runtime of 110.05 seconds, com-
pared to 2025.60 seconds for C-EPBD. These findings high-
light the adaptability and computational efficiency of Jax-
EPBD in scenarios involving high-throughput simulations
making it particularly well-suited for large-scale genomic
applications.

Binding prediction
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Figure 8: Scatter plot comparing Onehot R2 (average)
and Onehot+BDs R2(average) across different Transcription
factor families. Each family is represented by a unique com-
bination of marker style and color, highlighting variations
in performance. The dashed black line represents the ideal
relationship (y = x), indicating parity between the two meth-
ods

To analyze transcription factor (TF) binding affinity pre-
dictions on the SELEX dataset, we leveraged a simple Sup-
port Vector Regression (SVR) model with a linear kernel and
evaluated its performance using 10-fold cross-validation.
Initially, the model was evaluated using only the one-hot en-
coded representation of the DNA sequences. Subsequently,
we extended the feature set to include sequence informa-
tion combined with DNA breathing features, primarily co-
ordinate features derived from structural dynamics. Our key
observations were as follows: the inclusion of breathing fea-
tures consistently improved predictive performance across
most TF families, as indicated by higher R2 values as shown
in Figure 8. For example, the ”C2H2” zinc finger family
and homeodomain family demonstrated significant gains in
prediction accuracy with the addition of breathing features,
highlighting their importance in capturing subtle sequence-
dependent interactions. In contrast, TF families with inher-
ently strong baseline performance from one-hot encoding,

such as certain nuclear receptor proteins, exhibited relatively
modest improvements.

Conclusion
We developed and implemented JAX-EPBD, a high-
throughput Langevin molecular dynamics (LMD) simula-
tion framework for studying DNA breathing dynamics with
unprecedented efficiency and detail. Leveraging the com-
putational power of the JAX library and GPU acceleration,
our framework overcomes the temporal resolution and scal-
ability limitations of traditional methods like MCMC. JAX-
EPBD achieves exceptional runtime efficiency, offering up
to 30x speedup over the original C-based EPBD imple-
mentation, and scales effectively across varying sequence
lengths and batch sizes. This scalability enables the pro-
cessing of multiple DNA sequences concurrently, accommo-
dating longer sequences and capturing rare breathing events
critical for comprehensive DNA dynamics studies.

The framework’s capabilities were validated using the 77-
base-pair AAV P5 promoter, where we detected subtle but
significant differences in breathing dynamics between wild-
type and mutant sequences. These differences, reflected in
metrics such as average coordinate displacements, base flip-
ping probabilities, and bubble lifetimes, aligned with ex-
perimental observations of transcriptional activity, further
confirming the biological relevance of our approach. Ad-
ditionally, the integration of DNA breathing features into
transcription factor (TF) binding affinity predictions demon-
strated the utility of JAX-EPBD beyond fundamental dynam-
ics, with enhanced R2 values across most TF families, in-
cluding the ”C2H2” zinc finger and homeodomain families.

JAX-EPBD not only provides a robust and scalable plat-
form for studying DNA breathing dynamics but also of-
fers insights into how sequence variations influence genetic
function. Its efficiency and scalability make it a valuable
tool for exploring transcription factor binding specificity,
DNA repair mechanisms, and the effects of single nucleotide
polymorphisms on DNA stability. This advancement opens
new avenues for genome-scale analyses and deeper investi-
gations into the fundamental mechanisms governing genetic
processes.
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