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Abstract

This paper surveys foundation models for AI-enabled bio-
logical design, focusing on recent developments in applying
large-scale, self-supervised models to tasks such as protein
engineering, small molecule design, and genomic sequence
design. Though this domain is evolving rapidly, this survey
presents and discusses a taxonomy of current models and
methods. The focus is on challenges and solutions in adapting
these models for biological applications, including biologi-
cal sequence modeling architectures, controllability in gen-
eration, and multi-modal integration. The survey concludes
with a discussion of open problems and future directions, of-
fering concrete next-steps to improve the quality of biological
sequence generation.

Introduction
Natural language processing (NLP) has undergone a recent
revolution driven by Transformer-based neural networks and
the attention mechanism. These architectures have enabled
large language models (LLMs) to achieve remarkable per-
formance on natural language understanding and generation
tasks, many of which were once thought to be the exclusive
domain of human intelligence. While this transformation in
NLP has captured widespread attention, a quieter but equally
significant revolution has been unfolding in the biological
sciences.

Advances in molecular biology, particularly in large-scale
data collection initiatives such as the Protein Structure Ini-
tiative(Pro 2000–2015), the Human Genome Project(Collins
and Fink 1995) and structural genomics efforts(Dawson
et al. 2017; Jones et al. 2014; Bank 1971), have paved the
way for a new era of biological research. The rapid devel-
opment of next-generation sequencing technologies has led
to a wealth of widely available genomics, proteomics, and
metabolomics data. This multi-omics view of organisms has
driven breakthroughs such as AlphaFold’s(Jumper, Evans
et al. 2021) success in solving protein structure prediction,
earning two of its its main authors, Demis Hassabis and John
Jumper, the 2024 Nobel Prize in Chemistry. Perhaps more
importantly, these rapid developments are catalyzing a boom
in bioinformatics methodologies for various prediction and
generation tasks.

The aim of this survey is to provide an overview of re-
cent contributions to AI-enabled biological design, where

the goal is to leverage biological data and new methods
to design and engineer biological entities with impact-
ful applications in health, drug discovery(Blanco-Gonzalez
et al. 2023), synthetic biology(Voigt 2020), and material sci-
ences(Tang et al. 2021). Notably, David Baker, the third re-
cipient of the 2024 Nobel Prize in Chemistry, was recog-
nized for pioneering work in protein design.

While many neural network architectures and machine
learning methods are being developed for biological de-
sign, this survey focuses on a particularly promising fron-
tier: Foundation Models (FMs). These models, capable of
learning general representations from vast datasets in a task-
agnostic setting, offer exciting opportunities for biological
applications. Our understanding of FMs has evolved in re-
cent years, and we adopt a broad definition that aligns with
the Stanford University Human-Centered AI group’s un-
derstanding(Bommasani et al. 2021) in coining the term:
FMs are architecture-agnostic and defined by their ability
to learn from task-agnostic pre-training, making them ap-
plicable across a range of tasks. Although some researchers
narrowly define FMs as sequential models or strictly equate
them with LLMs, we take the position that FMs should be
considered more broadly for their capacity to learn deep rep-
resentations that can be leveraged for downstream tasks.

Given the rapid progress in FMs, it is timely to survey
this expanding landscape. These models are quickly trans-
forming AI research, with new developments appearing al-
most weekly, particularly in biological design applications.
While this survey cannot be fully comprehensive, it focuses
on key areas of concentrated activity or where significant
challenges are being articulated and addressed. Specifically,
we examine FMs that, leveraging the analogies between nat-
ural language and biological sequences, directly support bi-
ological sequence-design tasks; though this focus may be
somewhat narrow, we believe it encompasses some of the
most exciting developments in the field.

The survey highlights sequence-based FMs and focuses
on commonly-applied architectures, such as the Trans-
former, Diffusion, and State Space Model (SSM) architec-
tures. While FMs can encompass a broader range of archi-
tectures, we concentrate on these three due to their demon-
strated success in recent biological design literature. More-
over, while FMs can support a variety of prediction and
downstream tasks, our focus on biological design narrows



our attention to generative tasks, where models not only an-
alyze existing biological data but also aim to create novel bi-
ological entities with desired properties. As we will discuss,
this type of biological design includes de-novo drug design,
protein engineering, and DNA design through gene-editing.

Background and Preliminaries
FMs
While FMs do not dictate a specific architecture, some are
better suited to representation learning, a key aspect of mod-
ern FMs. We formalize implicit representation learning us-
ing a decoder-only text-based Transformer before exploring
diffusion and SSM paradigms.

Transformer Architecture In Transformer architec-
tures(Vaswani 2017), sequences are handled by maintaining
separate representations for each token at each layer, giving:
h
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This allows the model to create contextualized representa-
tions through the attention mechanism, where each token’s
representation at layer l depends on the representations of
all tokens from the previous layer. Specifically, for each
token embedding h

(l−1)
i , Transformer attention computes

attention scores using the query, key, and value projections:
Qi = Wqh

(l−1)
i , Kj = Wkh

(l−1)
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j for

all j, where Wq , Wk, and Wv are trainable weight matrices.
The layer representation h

(l)
i is then computed as a weighted

sum of the values: h(l)
i =

∑T
j=1 softmax(Qi ·Kj)Vj .

In this formulation, attention incurs a computational cost
during training proportional to the number of input tokens
squared, rendering its use for long sequences impractical.
Memory usage during inference scales linearly with the se-
quence length, as key and value representations for all to-
kens need to be stored, further limiting its efficiency.

To effectively leverage the representational power added
by the inclusion of context, the use of general, self-
supervised pre-training objectives has proven crucial for
learning representations that can be repurposed for other
downstream tasks. For decoder-only models, the pre-
training objective is typically autoregressive language
modeling, where the model predicts the next token in
a sequence given all previous tokens. Formally, the
model learns to approximate the probability distribu-
tion P (xi|x1, x2, . . . , xi−1). The attention mechanism is
thus constrained to left-to-right context, ensuring that
each token attends only to previous tokens: h

(l)
i =

Attention(l)(h(l−1)
1 , h

(l−1)
2 , . . . , h

(l−1)
i−1 ).

Finally, while the attention mechanism handles depen-
dencies between tokens, applying attention multiple times
in parallel at each layer (multihead attention), and stacking
many Transformer layers in a deep network builds the capac-
ity to learn complex and hierarchical relationships in data.

State-Space Models (SSMs) State-Space Models (SSMs)
provide an efficient alternative to Transformers for sequence
modeling, particularly for tasks requiring long-range depen-
dencies. While Transformers rely on quadratic self-attention

and increasing memory during inference, SSMs achieve sub-
quadratic scaling and constant memory by employing a Re-
current Neural Network architecture and using fixed-size
hidden states and linear state-space equations. These equa-
tions model state evolution over time as ht+1 = Aht +
But+1, with outputs yt = Cht + ∆ut. Key architectures
like S4(Gu, Goel, and Ré 2021) enhance SSMs with op-
timizations for long sequences, while Mamba(Gu and Dao
2023) employs Selective State Spaces to learn dynamic ver-
sions the A, B and C matrices whose values depend on the
input token.

Diffusion Modeling Models can forgo attention by in-
stead leveraging diffusion processes wherein noise is it-
eratively introduced to the inputs and then a learned re-
verse diffusion process is performed to reconstruct realis-
tic inputs. This allows global contextual relationships to
gradually emerge in the outputs of diffusion models over
many iterations of denoising. Formally, diffusion mod-
els progressively add random noise to input data over
T timesteps, following a Markov process in which each
timestep’s result depends only on the previous timestep and
the added noise. The probability of transforming the in-
put x0 into the noisy state xT after T steps is given by:
q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), where each transition is de-

fined as: q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) with βt

controlling the variance of the added noise at each step.
The reverse process, or “denoising,” mirrors this forward
process, allowing the model to reconstruct the input by
removing noise over time. For reverse diffusion, a neural
network ϵθ is trained to progressively denoise xT by re-
versing the diffusion process at each timestep t. The stan-
dard training objective is derived from a variational bound
on the data liklihood, giving the loss function L(θ) =
Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
.

While diffusion models were originally developed for
continuous data, like images, alternative approaches have
adapted this framework to discrete data, such as text. In one
approach, tokens are mapped into a continuous latent space,
where noise is progressively added over T timesteps. The
reverse process denoises the embeddings step by step, and a
decoder maps the final latent embeddings back to discrete to-
kens. This allows diffusion models to maintain local coher-
ence while capturing global structure over multiple denois-
ing steps. Another approach directly applies noise to discrete
tokens(Li et al. 2022) by either replacing tokens with others
sampled from the vocabulary(Hoogeboom et al. 2021) or by
masking them(Hoogeboom et al.). In the reverse process, a
neural network restores the correct token sequence from its
noisy version by minimizing the difference between the pre-
dicted tokens and the ground truth at each timestep. This
iterative denoising process enables diffusion models to gen-
erate coherent text, effectively adapting the diffusion frame-
work to discrete data.

Biological Design
Biological design encompasses the creation or modifica-
tion of biological entities for specific functions or proper-
ties. Researchers focus on three primary classes of biolog-



ical or chemical objects: proteins, DNA/RNA, and small
molecules. Different representations of these objects typi-
cally enable different neural network architectures, with the
two main representations being sequence-based and graph-
based. Sequence-based representations are derived from the
chemical formulas, such as representing proteins as se-
quences of characters corresponding to the twenty naturally
occurring amino acids or representing genomic sequences
as strings of the four nucleotide bases. The SMILES rep-
resentation for small molecules captures atoms as well as
bonds and branches. Graph-based representations, on the
other hand, model the bonds and interactions (e.g., hydro-
gen bonds, van der Waals interactions) between atoms or
molecular units as edges connecting vertices.

Biological design combines principles from biology,
chemistry, and computational science to engineer biologi-
cal systems. The primary areas of greatest activity are: (1)
Protein engineering: Designing novel proteins or modifying
existing ones for enhanced function, stability, or specificity;
(2) Small molecule design: Creating new drug candidates or
optimizing existing compounds for improved efficacy and
reduced side effects. Advances toward generating biolog-
ically functional small molecules or designing novel pro-
teins with precise control over properties—such as binding
affinity, solubility, or toxicity—could significantly acceler-
ate therapeutic development by streamlining the identifica-
tion of drug candidates and (3) Genomic sequence design:
Engineering DNA sequences for applications in synthetic
biology, gene therapy, or CRISPR-based genome editing. In
this survey we focus on how text-based FMs are adapted
for biological design due to their generative capabilities. We
will refer to FMs for these three topics as Chemical Lan-
guage Models (CLMs), Protein Language Models (PLMs),
and Genomic Language Models (GLMs).

Taxonomy and Survey
We categorize recent methods in Foundation Models for AI-
enabled Biological Design by the following taxonomy:
(A) Architectures: (1) Transformers; (2) State Space Mod-
els; (3) Diffusion Models.
(B) Controllability in Generation: (1) Fine-Tuning; (2)
Conditional Generation; (3) Reinforcement Learning; (4)
Custom Objective Functions; (5) Multi-condition Genera-
tion and Tradeoff Handling.
(C) Multi-Modal FMs: (1) Combining Biological Se-
quences; (2) Sequence and Structure Integration; (3) Incor-
porating Natural Language and Domain Knowledge.

Methods aligned with these categories are summarized in
Table 1.

Architectures
Transformer Models
Classic Transformer Models The SMILES representa-
tion facilitates using standard Transformer architectures like
GPT and XLNet (Yang 2019) for small-molecule design,
often with minimal modifications and NLP-optimized hy-
perparameters. MolGPT (Bagal et al. 2021), MCMG (Wang
et al. 2021), Regression Transformer (Moret et al. 2020), and

Taiga (Mazuz et al. 2023) employ GPT-like architectures
but differ in training and controllability strategies. PLMs
like Progen (Madani et al. 2023), Progen2 (Nijkamp et al.
2023), and ProtGPT2 (Ferruz, Schmidt, and Höcker 2022)
also use standard architectures with minor enhancements.
For instance, Progen2 incorporates Rotary Position Embed-
dings (RoPE (Su et al. 2024)) and improved parallelization.
In contrast, most DNA FMs adopt highly customized atten-
tion mechanisms or alternative architectures.

Specialized for Biological Design Transformer-based
models often adapt attention mechanisms to suit biolog-
ical tasks. Examples include RFDiffusionAllAtom (Kr-
ishna et al. 2024), NOS (Gruver et al. 2024), and
Evo (Nguyen et al. 2024a). RFDiffusionAllAtom extends
RoseTTAFold2’s multi-track attention with atomic-level de-
tails for protein-molecule complex design. NOS employs
an encoder-decoder Transformer for forward and backward
diffusion, optimized for antibody design. Evo uses a hy-
brid StripedHyena architecture, combining RoPE-based at-
tention with convolutional layers (Poli et al. 2023), enabling
efficient processing of long genomic sequences (up to 131
kilobases) for tasks like CRISPR DNA design.

State Space Models
SSM architectures often struggle to capture long-range de-
pendencies, which are critical for biological data. Protein se-
quences involve distant interactions (e.g., hydrogen bonds,
disulfide bridges), genomic data feature regulatory elements
far from target genes, and small-molecule sequences require
modeling ring closures and branching (Özçelik et al. 2024).

SSM-based models like Mamba and S4 have shown su-
perior performance in tasks like de novo molecule genera-
tion. For example, Özçelik et al. (2024) benchmarked S4 on
SMILES sequences, demonstrating its advantages in gen-
erating valid and unique molecules. ProtMAMBA applies
SSMs to protein sequence generation, using a ”fill-in-the-
middle” objective (Bavarian et al. 2022) to model long-range
dependencies for sequence inpainting.

Hyena-based models, such as HyenaDNA (Nguyen et al.
2024b), extend SSM capabilities by processing sequences
up to 1 million nucleotides. These architectures excel in
DNA modeling, capturing interactions at single-nucleotide
resolution for tasks like regulatory element detection.
RegLM (Lal et al. 2024) and Evo (Nguyen et al. 2024a)
leverage Hyena variants, with Evo combining Hyena layers
and attention mechanisms in its StripedHyena architecture.

Diffusion Models
Classic Diffusion Models Diffusion models, traditionally
used for continuous data like images, have been adapted
for biological sequences by embedding discrete token in-
puts. DNA-Diffusion (Senan et al. 2024) generates regula-
tory sequences controlling chromatin accessibility using a
U-net architecture and transforms nucleotides into a contin-
uous range for Gaussian noise introduction. Similarly, Dis-
cDiff (Li et al. 2024) employs a U-net with ResNet blocks
and encodes DNA into a continuous latent space via a Varia-
tional Autoencoder, decoding it back into discrete form after
reverse diffusion.



Table 1: Summary of current FM models for Biological Design.

Model Name Domain Architecture Design Goal Generation Method
MolGPT (Bagal et al.
2021)

Small
Molecule

Decoder-only Trans-
former

Control TPSA, QED, SAS,
LogP and molecular scaffolds

Conditional Autoregressive
Generation, pre-trained with
prepended property condition
embeddings

MCMG (Wang et al.
2021)

Small
Molecule

Decoder-only Trans-
former Distilled into
RNN

Control Bioactivity, QED, SAS Same as above, with added re-
inforcement learning rewarding
low property error

Taiga (Mazuz et al.
2023)

Small
Molecule

Decoder-only Trans-
former

QED, inhibitory potency
(plC50)

Policy gradient reinforcement
learning rewarding high prop-
erty values

S4 CLM (Özçelik et al.
2024)

Small
Molecule

S4-based SSM MAPk1 kinase inhibitors fine-tuning for transfer to de-
sired class

DiffuMol (Peng and
Zhu 2024)

Small
Molecule

Diffusion on embed-
dings, Transformer de-
coder for denoising

LogP, QED, TPSA, SAS, and
scaffolds

Noiseless conditional token an-
chors

Regression Trans-
former(Born and
Manica 2023)

Small
Molecule
and
Protein

Decoder-only Trans-
former (XLNet)

Control QED, solubil-
ity, lipophilicity for small
molecules, fluorescence, sta-
bility and Bowan index for
proteins

Alternating training scheme
that switches between property
prediction and conditional
sequence generation

Progen (Madani et al.
2023)

Protein Decoder-only Trans-
former

Proteins associated with spe-
cific families, biological func-
tions

Conditional autoregressive gen-
eration and fine-tuning

ProGen2 (Nijkamp
et al. 2023)

Protein Decoder-only Trans-
former with RoPE(Su
et al. 2024)

Structurally valid proteins, spe-
cific folds, antibodies

Fine-tuning, and three-residue
motif prompts for antibodies

ProtGPT2 (Ferruz,
Schmidt, and Höcker
2022)

Protein Decoder-only Trans-
former

Novel proteins that are also
plausible, mostly globular pro-
teins

Autoregressive sampling with
modified sampling schemes

ProtMamba (Sgar-
bossa, Malbranke, and
Bitbol 2024)

Protein Mamba-based SSM Homologous proteins, valid
inpainting-based protein modi-
fications

Autoregressive with homologs
for context, or inpainting using
Fill-in-the-Middle

EvoDiff (Alamdari
et al. 2023)

Protein Diffusion with Dilated
CNN

Proteins from specific families,
inpainting functional domains,
generating around motifs

MSA-conditioned for family-
based, motif-based condition-
ing and inpainting for scaffolds

NOS (Gruver et al.
2024)

Protein BERT-based Encoder-
Decoder

Antibodies with high expres-
sion yield and binding affinity

Diffusion, multi property
value function, Latent Multi-
Objective Bayesian Optimiza-
tion

RFDiffusionAA (Kr-
ishna et al. 2024)

Protein
com-
plexes

Specialized Multi-track
attention based archi-
tecture

Protein binders for small
molecules, including nucleic
acids, proteins, and ligand
complexes

Condition on ligand as fixed
noiseless anchor

MMDIFF (Morehead
et al. 2023)

DNA
and
Protein

One-hot vector for
discrete sequences,
FrameDiff architecture
for 3d structure

Macromolecular Complexes Joint reverse diffusion with sep-
arate loss components for se-
quence and structure

regLM (Lal et al. 2024) DNA Based on Hyena-
DNA(Nguyen et al.
2024b), SSM-like

Cis-regulatory elements with
specified levels of activity or
cell-type specificity

Special condition tokens for ac-
tivity level or cell type, outputs
filtered using regression model

Evo (Nguyen et al.
2024a)

DNA StripedHyena using at-
tention and SSM-like
blocks

Nucleotide sequences for
CRISPR systems, function-
conserving transposable
elements

Fine-tuning to enable condi-
tioning on special tokens

DiscDiff (Li et al. 2024) DNA 2-stage VAE, with
U-net based denoising
networks

DNA for specific species, gene
expression levels, or cell types

Conditional generation with
absorb-escape algorithm

DNA-diffusion (Senan
et al. 2024)

DNA U-net backbone Regulatory sequences to con-
trol chromatin accessibility

Conditioning on cell-type la-
bels



Specialized for Biological Design EvoDiff (Alamdari
et al. 2023) tailors diffusion for protein modeling us-
ing two methods: Order Agnostic Autoregressive Diffusion
(OADM), which masks tokens randomly, and D3PM, which
introduces mutation-based noise guided by natural muta-
tion probabilities. This approach enhances the generation
of functional, stable, and active proteins. Hybrid models
combine diffusion and Transformers to capture broader con-
texts. NOS (Gruver et al. 2024) uses a BERT-small encoder-
decoder for protein sequences, while DiffuMol (Peng and
Zhu 2024) employs a Transformer decoder for small-
molecule generation with properties like QED and LogP. In
multi-modal settings, RFDiffusionAA adapts RoseTTAFold
All-Atom for generating protein-molecule complexes using
sequence and structure. MMDIFF (Morehead et al. 2023)
jointly diffuses DNA and protein sequences, aligning se-
quence and structural losses for coherent macromolecular
complex generation.

Controllability in Generation
A key challenge in advancing FMs for biological design is
achieving fine-grained control over generated data. We note
that biological design is inherently an engineering endeavor.
The designed entities are intended to be ultimately synthe-
sized in wet laboratories and then operationalized for partic-
ular outcomes. So, the issue of control is inherent to success-
ful, synthetically-accessible and operationalizable design.

For small molecules, continuous numerical properties
may need to be controlled, including Drug-likeness, LogP,
Molecular Weight, Synthetic Accessibility, Toxicity, and
Topological Surface Area. One may require particular
classes of molecular compounds, such as “kinase inhibitors”
or “Quaternary Ammonium Compounds” depending on the
downstream task/application. For proteins, one typically
controls for specific functions or similarity to other known
proteins. For DNA, one may ensure specific regulatory prop-
erties, such as promoters or enhancers, or design guide
RNAs (gRNAs) to facilitate CRISPR-based gene editing.

Fine-Tuning
Fine-tuning adapts pre-trained FMs for specific tasks by
training on smaller, targeted datasets. For instance, Özçelik
et al. (2024) fine-tune an S4-based CLM pre-trained on 1.9
million SMILES to generate MAPK1 inhibitors from just 68
annotated molecules. Similarly, Madani et al. (2023) fine-
tune ProGen on lysozyme families, generating proteins with
catalytic efficiencies comparable to natural lysozymes de-
spite low sequence identity. While essential for controlled
generation, fine-tuning can be computationally expensive,
especially for large models like ProGen with 1.2 billion pa-
rameters. It may also struggle with very small datasets rela-
tive to the pre-training corpus, limiting its effectiveness for
granular control.

Conditional Generation
Conditional generation embeds prompts or control tags
into inputs to guide outputs toward desired characteristics.
RegLM (Lal et al. 2024) designs synthetic cis-regulatory

elements (e.g., promoters, enhancers) by conditioning on
starter fragments, while Evo (Nguyen et al. 2024a) opti-
mizes gRNA sequences using prompt tokens like cas9” or
cas13” to improve efficiency and specificity. Progen2 gener-
ates antibody sequences conditioned on motif prompts, Prot-
Mamba creates homologous proteins based on family con-
text, and RFDiffusionAA (Krishna et al. 2024) uses unal-
tered ligands as diffusion constraints for protein-ligand com-
plex generation. MolGPT (Bagal et al. 2021) embeds con-
trol tokens in pre-training inputs but retrains for each new
property, deviating from the general FM paradigm. Despite
enabling control, conditional generation is limited by its re-
liance on training examples, constraining novelty and po-
tentially biasing the model toward features correlated with
target properties, which can reduce diversity in outputs.

Reinforcement Learning
Reinforcement learning (RL) guides generation through re-
ward functions, optimizing objectives like bioactivity and
molecular diversity. In sequence generation, tokens are
treated as actions, and the model is fine-tuned based on how
well sequences meet desired conditions. RL’s ability to han-
dle non-linear rewards makes it ideal for multi-objective op-
timization. The MCMG model (Wang et al. 2021) uses RL
to balance molecular properties. It begins with a conditional
Transformer and distills it into a simpler recurrent model
fine-tuned via RL, optimizing bioactivity, drug-likeness, and
synthetic accessibility. Invalid molecules receive zero re-
wards, incorporated into an augmented likelihood loss for
property optimization. Similarly, Mazuz et al. (2023) com-
bine Transformers with RL, using policy gradients to opti-
mize properties like QED and pIC50. Rewards are applied
only to valid molecules, prioritizing near-term returns with
a high discount factor. However, RL’s practicality is limited
by the complexity of designing effective reward functions,
especially in high-dimensional biological spaces.

Multi-Condition Generation and Tradeoff
Generating molecules with multiple properties is challeng-
ing, particularly for rare combinations constrained by phys-
ical or chemical limitations. Models must balance validity,
diversity, and novelty, which often conflict. For example, an-
tibacterial drug design requires novel molecules to counter
resistance but risks reducing validity.

Techniques like adjusting autoregressive Transformer pa-
rameters (e.g., temperature) allow users to prioritize validity
or uniqueness. MCMG (Wang et al. 2021) uses reinforce-
ment learning to optimize molecular properties while main-
taining diversity. DiffuMol (Peng and Zhu 2024) employs
diffusion modeling with attention mechanisms to balance
property optimization and molecular diversity, focusing on
key regions while allowing scaffold variation.

Multi-Modal FMs
While FMs often excel at learning from a single data modal-
ity, biological systems are inherently multi-modal, involving
interactions across sequence, structure, and function at var-
ious scales. Effectively integrating these diverse data types



remains an open challenge in biological modeling. Often,
biological data sources are treated independently, overlook-
ing the interactions between systems. DNA sequences are
often viewed in isolation, but DNA alone does not fully
describe an organism’s phenotype. As Denis Noble(Noble
2012, 2024) and others emphasize, biological processes re-
sult from interactions across molecular, cellular, physiologi-
cal and organismal scales(Ramsden 2023).

Combining Multiple Forms of Biological Sequences
Multimodal approaches enhance GLMs by integrating epi-
genetic and transcriptomic data. For instance, gLM2 (Corn-
man et al. 2024), trained on the Open MetaGenomic corpus,
combines nucleotide sequences, amino acid sequences, and
strand direction for tasks like gene regulation.

Hybrid methods are increasingly used in biological de-
sign. MMDiff (Morehead et al. 2023) integrates sequence
and structural data to generate nucleic acid-protein com-
plexes. RFAA (Krishna et al. 2024) models complex
biomolecular systems with a three-track architecture incor-
porating 1D sequences, pairwise relationships, and 3D struc-
tures. It also uses conditional diffusion fine-tuning to gener-
ate binding proteins from substructures like ligands.

Combining Sequence and Structure
Integrating structural information with sequence data en-
hances performance in tasks reliant on geometry and phys-
ical constraints. Molecular graphs and protein structures
(secondary to quaternary) add essential spatial context miss-
ing from sequences alone. Additional inputs like biological
environments, target receptors, or transcriptomic data fur-
ther enrich models.

For example, MMDiff (Morehead et al. 2023) combines
sequence and structural data to model nucleic acid-protein
complexes, addressing challenges like Intrinsically Disor-
dered Regions. ProtMamba (Sgarbossa, Malbranke, and Bit-
bol 2024) uses homologous sequences without MSAs for
protein inpainting and de novo generation, capturing evolu-
tionary context. While Progen2 (Nijkamp et al. 2023) par-
tially utilizes Gene Ontology (GO) terms, its rich graph
structure, linking biological processes and molecular func-
tions, remains underexplored for generation.

Incorporating Natural Language and Domain
Knowledge
A key advantage of FMs like GPT-4 is their ability to interact
via natural language, offering flexibility absent in biology-
specific models. Recent efforts integrate natural language
with biological sequence models, enabling tasks through
prompts. Examples include ChatNT (Richard et al. 2024)
for genomics, and Nach0 (Livne et al. 2024) and Instruct-
BioMol (Zhuang et al. 2024) for chemical sequences.

ChatNT combines biological sequence processing (DNA,
RNA, proteins) with NLP via the Nucleotide Transformer
(Dalla-Torre et al. 2023) and Vicuna-7B, allowing conversa-
tional interactions. Nach0 applies this to SMILES molec-
ular sequences for tasks like molecular property predic-
tion and generation. For instance, when prompted to design

a JAK3 inhibitor, Nach0 generated eight valid molecules,
achieving a discovery rate of 0.11%, compared to 1.53% for
a structure-aware baseline. InstructBioMol further expands
capabilities by incorporating natural language, 2D molecu-
lar graphs, protein sequences, and 3D structures, enabling
molecule captioning, description-based generation, and pro-
tein property Q&A.

Open Problems
Which Architectures for Which Biological Tasks: Despite
the proliferation of architectures (e.g., Transformers, diffu-
sion, SSMs) tailored to specific tasks, there is no consensus
on the best choices across biological domains. Challenges
include inconsistent benchmarks and evaluations. Exploring
underused architectures, such as diffusion models for tex-
tual molecular data, and developing domain-specific self-
supervised objectives could improve representation learn-
ing, especially in sequence-only or multi-modal settings.

Innovative Approaches for Data Limitations: Scalabil-
ity and generalization in biological FMs are hindered by
limited and fragmented datasets. While NLP breakthroughs
leveraged vast data, biology requires alternative solutions,
such as lighter architectures or new strategies to achieve gen-
eralizable representations without massive datasets.

Enhancing Transfer to Low-Data Regimes: Transfer
learning is critical for underrepresented molecule classes,
such as Quaternary Ammonium Compounds with antibiotic
properties but limited data. Techniques like fine-tuning and
conditional generation, inspired by ProGen2 (Nijkamp et al.
2023), can address pre-training biases and guide models to-
ward specific regions of chemical space.

Integrating Biological Modalities: Integrating modali-
ties like chemical graphs with SMILES in CLMs or Gene
Ontology (GO) annotations for proteins offers new oppor-
tunities. Techniques like Adapters (Liu et al. 2023) could
enhance molecule generation, and extending GO-based ap-
proaches could refine pre-training and downstream tasks.

Improving Control in Generation: Controlling FMs to
generate rare or unlikely property combinations in biolog-
ical sequence space remains a challenge. Investigating the
root causes—whether due to data scarcity or physical con-
straints—can inform strategies to expand coverage of ”dark”
protein space (Ferruz, Schmidt, and Höcker 2022) and im-
prove the generation of uncommon combinations.

Conclusion
The field is moving ahead rapidly; a large number of the
cited papers here are from preprint servers such as arXiv
and BioRxiv, highlighting the need for standardization of
datasets and metrics. Furthermore, looking ahead, it is cru-
cial for research to prioritize rigorous comparative evalua-
tions of different model architectures for biological gener-
ation, more sophisticated integration of biological modal-
ities, and improved strategies for generalization across di-
verse biological systems. This is especially timely, as the
United States National Academies of Sciences, Engineer-
ing, and Medicine are founding a committee on Founda-
tion Models for Scientific Discovery and Innovation, un-



derscoring the growing importance of this area.(National
Academies of Sciences and Medicine 2024) By address-
ing these challenges, FMs could truly revolutionize fields
such as drug discovery, synthetic biology, and genetic en-
gineering, accelerating breakthroughs and moving us closer
to practical, AI-driven biological innovations that can mean-
ingfully impact our understanding and manipulation of life.
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Gu, A.; Goel, K.; and Ré, C. 2021. Efficiently modeling
long sequences with structured state spaces. arXiv preprint
arXiv:2111.00396.
Hoogeboom, E.; Gritsenko, A. A.; Bastings, J.; Poole, B.;
van den Berg, R.; and Salimans, T. ???? Autoregressive Dif-
fusion Models. In International Conference on Learning
Representations.
Hoogeboom, E.; Nielsen, D.; Jaini, P.; Forré, P.; and Welling,
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hierarchy: Towards larger convolutional language models.
In International Conference on Machine Learning, 28043–
28078. PMLR.
Ramsden, J. 2023. Bioinformatics: an introduction.
Springer Nature.

Richard, G.; de Almeida, B. P.; Dalla-Torre, H.; Blum, C.;
Hexemer, L.; Pandey, P.; Laurent, S.; Lopez, M. P.; Laterre,
A.; Lang, M.; et al. 2024. ChatNT: A Multimodal Conver-
sational Agent for DNA, RNA and Protein Tasks. bioRxiv,
2024–04.
Senan, S.; Reddy, A. J.; Nussbaum, Z.; Wenteler, A.; Be-
jan, M.; Love, M. I.; Meuleman, W.; and Pinello, L. 2024.
DNA-Diffusion: Leveraging Generative Models for Control-
ling Chromatin Accessibility and Gene Expression via Syn-
thetic Regulatory Elements. In ICLR 2024 Workshop on Ma-
chine Learning for Genomics Explorations.
Sgarbossa, D.; Malbranke, C.; and Bitbol, A.-F. 2024. Prot-
Mamba: a homology-aware but alignment-free protein state
space model. bioRxiv, 2024–05.
Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024.
Roformer: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568: 127063.
Tang, T.-C.; An, B.; Huang, Y.; Vasikaran, S.; Wang, Y.;
Jiang, X.; Lu, T. K.; and Zhong, C. 2021. Materials de-
sign by synthetic biology. Nature Reviews Materials, 6(4):
332–350.
Vaswani, A. 2017. Attention is all you need. arXiv preprint
arXiv:1706.03762.
Voigt, C. A. 2020. Synthetic biology 2020–2030: six
commercially-available products that are changing our
world. Nature Communications, 11(1): 1–6.
Wang, J.; Hsieh, C.-Y.; Wang, M.; Wang, X.; Wu, Z.; Jiang,
D.; Liao, B.; Zhang, X.; Yang, B.; He, Q.; et al. 2021. Multi-
constraint molecular generation based on conditional trans-
former, knowledge distillation and reinforcement learning.
Nature Machine Intelligence, 3(10): 914–922.
Yang, Z. 2019. XLNet: Generalized Autoregressive Pre-
training for Language Understanding. arXiv preprint
arXiv:1906.08237.
Zhuang, X.; Ding, K.; Lyu, T.; Jiang, Y.; Li, X.; Xiang, Z.;
Wang, Z.; Qin, M.; Feng, K.; Wang, J.; et al. 2024. In-
structBioMol: Advancing Biomolecule Understanding and
Design Following Human Instructions. arXiv preprint
arXiv:2410.07919.


	Background and Preliminaries
	FMs
	Biological Design

	Taxonomy and Survey
	Architectures
	Controllability in Generation
	Multi-Modal FMs

	Open Problems
	Conclusion

