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Abstract

Machine learning-based antibody design is emerging as
one of the most promising approaches to combat infec-
tious diseases, due to significant advancements in the
field of artificial intelligence and an exponential surge
in experimental antibody data (in particular related to
COVID-19). The ability of an antibody to bind to an
antigens (called binding affinity) is one of the the most
critical properties in designing neutralizing antibodies.
In this study we introduce Ab-Affinity, a new large lan-
guage model that can accurately predict the binding
affinity of antibodies against a target peptide, e.g., the
SARS-CoV-2 spike protein.

Introduction
Antibodies are proteins composed of two identical polypep-
tide chains, termed “heavy chains” and two identical “light
chains”, respectively, connected by disulfide bonds. Each
light chain consists of one variable domain and one constant
domain, while each heavy chain contains one variable do-
main and 3-4 constant domains. Each antibody possesses an
antigen binding site, called paratope, typically buried within
the variable domain’s complementarity-determining regions
(CDRs). The paratope recognizes and binds specifically to
a target region on the surface of an antigen, known as the
epitope. CDRs together constitute the binding site of the
antibody, and their sequence diversity allows antibodies to
recognize a wide range of antigens with high specificity.
The binding interaction between the antibody and antigen
is highly specific. This binding may trigger various immune
responses, including the neutralization of a live virus, a toxin
or an antigen with catalytic activities, leading to the eventual
elimination of the antigen from the organism.

Measuring the binding affinity of an antibody against
an antigen is critical for understanding immune responses
elicited by vaccines and infections, as well as for design-
ing antibodies with therapeutic applications. Such measure-
ments often involve biophysical and biochemical techniques
such as Surface Plasmon Resonance (SPR), Enzyme-Linked
Immunosorbent Assay (ELISA), or Bio-Layer Interferom-
etry (BLI), which generally includes immunization of ani-
mals to obtain a host of candidate antibodies, their purifi-
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Figure 1: Overview of Ab-Affinity. Ab-Affinity predicts the
binding affinity against a specific target peptide; it can also
provide residue-residue contact maps and an embedding of
the input sequence.

cation, and testing of the candidates for choosing the opti-
mum molecules that exhibit high-specificity and sufficient
strength of epitope-paratope interaction. These approaches
incur significant time and cost. Computational approaches
hold promise to replace some of these time-intensive steps
to narrow down the list of candidate antibodies for final test-
ing.

Predicting the specificity and strength of antigen-antibody
interaction for protein antigens is a sub-problem of predict-
ing specific protein-protein interactions. However, the for-
mer problem is harder because the paratope and the epitope
regions of many antibodies and their cognate antigens are
often flexible, and contain relatively mobile intrinsically dis-
ordered protein regions (IDPRs) when not in complex with
the cognate antigen (Uversky and Van Regenmortel 2021;
MacRaild et al. 2016). Structures of flexible and mobile re-
gions of proteins are relatively poorly represented in pro-
tein structure databases because they are technically harder
to determine; training data for learning structural rules are
consequently sparse. Predicting these interactions from se-
quences can be advantageous if the structural and functional
roles of amino acids in the sequence are effectively identi-
fied and modeled.

The problem of predicting binding affinity has been ex-
tensively studied in the literature. For instance, ISLAND
(Abbasi et al. 2020) uses a comprehensive feature extrac-



tion from protein sequence combined with regression but
achieves a modest predictive accuracy. DeepDTA (Öztürk,
Özgür, and Ozkirimli 2018) improves upon ISLAND by re-
lying on Convolutional Neural Networks (CNN) for protein-
ligand interactions. More recent models like DG-Affinity
(Yuan et al. 2023) and CSM-AB (Myung, Pires, and As-
cher 2022) integrate large language models and graph-based
techniques, thus enhancing the accuracy of predictions. Tag-
LLM (Shen et al. 2024) and FAbCon (Barton et al. 2024)
further refine these capabilities by using task-specific tags
and fine-tuned large language models for antibody-antigen
interactions. The use of pre-trained protein language models
in DG-Affinity (Yuan et al. 2023) has shown superior per-
formance in predicting antibody binding affinities compared
to many other methods. Large language models were also
used to predict the binding affinity of antibodies against the
SARS-CoV-2 spike protein (Li et al. 2023). However, due to
the specificity of antibodies to antigens, existing multi-target
affinity prediction models are unsuitable for SARS-CoV-2.
Therefore, an efficient binding affinity prediction model is
essential targeting this virus.

In this study, we introduce a large language model called
Ab-Affinity that was trained on single-chain fragment vari-
able (scFv) sequences from multiple libraries of engineered
antibodies. Ab-Affinity provides meaningful representation
(i.e., embedding) of antibodies which align with binding
properties and thermostability proprieties against SARS-
CoV-2, and can be used to create the binding landscape of
antibodies. Second, Ab-Affinity provides intra-residue at-
tention maps of antibodies which can be used to explain
differences of amino-acid interactions for strong and weak
binding. Figure 1 illustrates the overall framework of this
study.

Methods
Dataset
The training used a dataset of single-chain fragment vari-
able (scFv) antibody sequences with the associated bind-
ing scores against a peptide in the SARS-CoV-2 HR2 re-
gion (Engelhart et al. 2022). The SARS-CoV-2 spike pro-
tein has mutated, forming variants such as Wuhan, Alpha,
Delta, Omicron, and others. The selected HR2 peptide, con-
served across all variants of SARS and MERS spike pro-
teins, is crucial for evaluating antibodies against the broader
coronavirus group. The dataset was obtained by introduc-
ing one, two, and three amino acid changes into the se-
quences of three candidate antibodies obtained from a phage
display library that bound to the HR2 antigen polypeptide:
Ab-14-VH and Ab-14-VL, Ab-91-VH, Ab-95-VH and Ab-
95-VL. The binding affinity (KD) of each of the 104,972
resulting variants the selected target peptide was estimated
in three independent biological replicates (Engelhart et al.
2022). Each KD value was the equilibrium dissociation con-
stant estimated by an indirect competitive binding assay.
The experimental assay was conducted in triplicate for each
antibody, and the full dataset contained three KD values
for each antigen-antibody pair. We preprocessed the inter-
action data by taking the arithmetic mean of the two clos-

est KD values for each antigen-antibody interaction and
by eliminating the third value to reduce the outlier effect.
Antibodies that had missing values across all three repli-
cates were disregarded from the analysis. After preprocess-
ing, a total of 71,834 unique antibodies were utilized for
model training. Ab-Affinity was trained on all antibody se-
quences (from each seed antibody) and their corresponding
log-transformed binding affinity log10(Kd). Distributions of
training antibodies are shown in Figure 2.

Model Architecture
Ab-Affinity’s architecture is based on BERT (Devlin et al.
2018), as implemented in ESM-2 (Lin et al. 2023) (see Fig-
ure 3). We chose the BERT architecture because the dataset
consists of amino acid sequences with a few point muta-
tions. BERT effectively captures long-range dependencies,
providing meaningful representations that align with bind-
ing affinity changes caused by these mutations. Ab-Affinity
contains N sequential layers of encoder blocks. Each en-
coder block consists of multi-head attention layers (Vaswani
et al. 2017) followed by feed-forward layers. The value of N
determines the model size. We have tested N = 6, 12, and
33, which resulted in a model with 8M, 35M, and 650M
parameters, respectively. We chose these values for N based
on the ESM-2 study (Lin et al. 2023), which demonstrated
the impact of model size on the performance of this BERT-
based architecture. We used the last encoder layer output as
the sequence representation (i.e., the embedding). Depend-
ing on the choice of N the embedding of the sequence had
320, 480 and 1280 dimensions, respectively. We added one
fully connected layer to predict the binding affinity from the
embedding of the sequence.

Training
We used Mean Squared Error (MSE) as the loss function,
and Adam optimizer to optimize the parameters. We used
85% of the data to train the model (maintaining the dis-
tribution of affinity values). The remaining 15% was used
to validate the model. We trained our model using four
cores NVIDIA A100 (80GB) with a batch size of 128 for
100 epochs. For the amino-acid contact analysis, we used
the method by Rao et. al. (Rao et al. 2020). We fine-tuned
the pre-trained ESM-2 protein language model encoder lay-
ers, leveraging the knowledge acquired from the entire pro-
tein database to train our model. Additionally, we trained
a model with randomly initiated weights to understand the
impact of pretrained protein knowledge on binding affinity
prediction. We saved the best-performing model based on
the Pearson correlation coefficient on the validation set for
each setup of training. Ab-Affinity, with 33 layers and fine-
tuned from ESM-2, is the best-performing model among all
the trained models.

t-SNE visualization of embeddings
The T-Distributed Stochastic Neighbor Embedding (t-SNE)
(Van der Maaten and Hinton 2008) was used to reduce high
dimensional sequence representation to 2-D space to plot the
antibodies. We carried out the dimensionality reduction us-
ing Python scikit-learn package and set the perplexity at 200.



Figure 2: Dataset description. a. Distribution of Binding Affinity (log KD); b. Distribution of antibodies from each seed; c.
Distribution of antibodies with mutation.
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Figure 3: Model Architecture of Ab-Affinity

Experimental Results
Ab-Affinity Predicts the Binding Affinity of
Antibodies Against SARS-CoV-2
We first investigated whether Ab-Affinity creates meaning-
ful latent space features (i.e., embeddings) for the antibodies
after training. To this end, we visualized Ab-Affinity’s em-
beddings in a 2D space using t-distributed Stochastic Neigh-
bor Embedding (t-SNE) maps. To compare the performance
of our methods with the best existing method, we also visu-
alized the embeddings produced by ESM-2.

In the t-SNE plots in Figure 5 each point is an antibody
and the color illustrates its corresponding binding affinity.
Observe in Figure 5 that the embeddings produced by Ab-
Affinity display a smooth gradient of binding affinity, i.e.,
the value of logKd monotonically decreases. By contrast,
the ESM-2 embeddings in Figure 5 do not show a clear gra-
dient descent along the t-SNE components.

To evaluate the performance of our method, we then
compared Ab-Affinity’s ability to predict binding affinity
with those of three other LLM-based methods, namely DG-
Affinity, ESM-2, and AbLang. The same test dataset, which
was held out from training and not utilized during model de-
velopment, was used to predict binding affinity and compare

the performance of the methods. To proceed with this com-
parison, We recall that DG-Affinity uses a pre-trained lan-
guage model combined with a ConvNext-based architecture
for prediction, which outperforms 26 other methods on an
independent antibody dataset (Yuan et al. 2023). ESM-2 was
pre-trained on the UniRef50 protein database and generated
640-dimensional antibody sequence embeddings, which we
fed into a simple linear regression model. AbLang uses sep-
arate embeddings for the heavy and light chains of antibod-
ies, which we concatenated into a 1534-dimensional vector
and used in a linear regression model to predict the affinity
score.

Figure 4 illustrates (a) Pearson and Spearman-rank corre-
lation coefficients for the four methods on the test set, (b-
e) scatter plots for actual vs. predicted affinity for the four
methods. The highest Pearson/Spearman correlation coeffi-
cients were observed with the predictions from Ab-Affinity.
Observe that DG-Affinity has the lowest Pearson correlation
coefficient of 0.194, presumably because although it used
an LLM pre-trained on antibodies, the architecture head it-
self was not trained with any SARS-CoV-2-specific data.
Surprisingly, ESM-2, which was pre-trained on “generic”
proteins, produced a good Pearson/Spearman correlation.
AbLang, which is instead trained on antibody sequences,



a. Correlation comparison b. DG-Affinity

c. ESM-2 d. AbLang e. Ab-Affinity

Figure 4: Comparing affinity prediction models: (a) Pearson and Spearman correlation for DG-Affinity (p-values = 3.86× 10−14,
and 3.38 × 10−15), ESM-2 (p-values = 8.03 × 10−198, and 8.02 × 10−198), AbLang (p-values = 1.24 × 10−175, and 1.02 × 10−163) and
Ab-Affinity (p-values = 4.03 × 10−261, and 8.65 × 10−217); scatter plot for actual vs. predicted binding affinity for (b) DG-Affinity, (c)
ESM-2, (d) AbLang, (e) Ab-Affinity (includes antibodies for all three seeds)

Figure 5: t-SNE representation of the embedding produced
by ESM-2 and Ab-Affinity; antibodies are colored according
to their predicted binding affinity.

also achieved a good Pearson/Spearman correlation. The
scatter plots of actual vs. predicted binding affinity in Fig-
ure 4(b-e) show that the best-fit lines for Ab-Affinity have
the highest slope, indicating the best predictive accuracy.

To explore whether the prediction methods are sensitive to
the choice of the test dataset, we compared Ab-Affinity with
the other three methods using a different dataset. Table 1
compares the performance of CNN-based and LLM-based
methods for predicting binding affinity to the same pep-
tide. We used the 14H dataset (heavy chain sequences) and
14L dataset (light chain sequences) which are the mutated

version of Ab-14 heavy and light chain sequences, respec-
tively. To fit the heavy chain sequences from 14H dataset, the
seed light chain sequence of Ab-14 was paired with different
heavy chains from 14H to form scFv sequences. Similarly,
the seed heavy chain was paired with different light chains
from 14L to form additional scFv sequences. We observed
that the Pearson correlation coefficient of both 14H and 14L
antibodies generated Ab-Affinity were the highest among all
models. While the best Spearman correlation for 14H was
obtained by A2Binder, that of Ab-Affinity closely followed.
Note that these correlation coefficients are specific to pre-
dicting the binding affinity for antibodies derived from the
Ab-14 seed antibody. However, Ab-Affinity not only shows
a superior correlation for Ab-14 but also for all three seed
antibodies ( Figure 4).

Ab-Affinity’s Embeddings enable Downstream
Classification Tasks
We used Ab-Affinity embeddings to carry out two down-
stream classification tasks related to antibody binding char-
acteristics, namely (i) the problem of determining the an-
tibody binding affinity classes (High, Medium, Low), and
(ii) the problem of determining whether the binding affin-
ity of an antibody was stronger than the binding affinity of
the corresponding seed antibody (Yes, No). Figure 6 reports
the Receiver Operating Characteristic (ROC) curves for the



Table 1: Comparing Ab-Affinity against other binding affinity predictors on 14H and 14L dataset

Model Ref 14H 14L
Pearson Spearman Pearson Spearman

Ens-Grad (Liu et al. 2020) 0.601 0.476 0.637 0.645
ESM-F (He et al. 2024) 0.634 0.516 0.674 0.681
AntiBERTa2 (Barton, Galson, and Leem 2024) 0.623 0.545 0.673 0.684
AbMAP (Singh et al. 2023) 0.606 0.510 0.674 0.685
A2Binder (He et al. 2024) 0.642 0.553 0.683 0.688
Ensembles-14H (Li et al. 2023) N/A 0.512 N/A N/A
Ensembles-14L (Li et al. 2023) N/A N/A N/A 0.688
Ab-Affinity [this] 0.652 0.526 0.712 0.713

two classification tasks, comparing the classifiers’ AUC us-
ing the embeddings produced by Ab-Affinity against ESM-
2. For both tasks the classifiers built using Ab-Affinity’s em-
bedding has much higher AUC values, suggesting that Ab-
Affinity’s embeddings are more informative for downstream
applications.

Figure 6: ROC curves and AUC values for two classification
tasks, namely (a,b) determining the binding affinity class
of an antibody (High, Medium, Low) and (c,d) determin-
ing whether the binding is improved compared to the seed
antibody (Y/N); (a,c) ROC curves using the ESM-2 embed-
ding; (b,d) ROC curves using the Ab-Affinity embedding;
AUC values are reported for each classifier

Ab-Affinity’s Attention Maps for Strong and Weak
Binding Antibodies
We extracted attention maps from the Ab-Affinity model to
determine which residue-residue interactions were more im-
portant for the prediction of binding affinity. We produced
residue-residue contact maps for heavy and light chains of
antibodies with strong binding affinity (i.e., logKd < 0.5)
and antibodies with weak binding affinity (i.e., logKd >
5.5). Figure 7 illustrates the residue-residue differences be-
tween the attention maps for strong and weak binding anti-

b.Heavy Chain Light Chaina.

Figure 7: Differences between the attention residue-residue
maps for strong binding (i.e. logKd < 0.5) and weak bind-
ing (i.e., logKd > 5.5) for antibodies generated from Ab-14
(a) heavy chain, and (b) light chain.

bodies for both heavy and light chains. The CDRs are high-
lighted in pink, green and purple in Figure 7. Observe that
many of the strongest differences occur in CDR-H1, CDR-
H2, CDR-L1 or the regions immediately adjacent to them.

Ab-Affinity Captures Thermostabilty Properties of
Antibodies
The ability of a protein to resist degradation or changes to
its physical structure at higher temperature is called ther-
mostability. This property is essential for therapeutic anti-
bodies as it determines their structural integrity and func-
tionality at higher temperature. Here we investigated the cor-
relation of Ab-Affinity’s embeddings with the thermostabil-
ity of the corresponding antibody. For this task, we used
studies (Hie et al. 2024; Rosace et al. 2023) to create a small
dataset of experimentally-determined thermostability for 26
SARS-CoV-2 antibodies. In the t-SNE plots in Figure 8 each
point is an antibody and the color illustrates its correspond-
ing thermostability. Observe that in the Ab-Affinity’s em-
beddings, antibodies are clearly separated into two clusters,
each with relatively similar thermostability values. It is not
the case for the ESM-2 embeddings. One explanation of this
finding is that the fine-tuned language model has learned
intrinsic rules that not only govern the physics of antigen-
antibody interaction but also the physics of protein stabil-
ity that contributes to the stable interactions over a range of
temperatures.



Figure 8: t-SNE visualization of the embeddings produced
by ESM-2 and Ab-Affinity; points are colored according to
the experimentally-determined thermostability of those an-
tibodies

Conclusion
We introduced Ab-Affinity, a large language model that
can predict the binding affinity of antibodies against the
SARS-CoV-2 spike protein. In our experiments, Ab-Affinity
demonstrated stronger predictive performance than other
methods in the literature. The model was able to learn the
effect of mutations on binding with the SARS-CoV-2 spike
protein. The t-SNE visualization of Ab-Affinity’s embed-
dings suggested that our approach captured the relationships
between antibody sequences and binding affinities. Our ex-
periments also show that Ab-Affinity’s embeddings enabled
a strong performance on several classification tasks, em-
phasizing the utility of our model beyond affinity predic-
tion. The residue-residue attention maps extracted from Ab-
Affinity reveal that our model appears to focus on the CDR
or the neighboring regions, which are the binding sites in the
antibody. Ab-Affinity also demonstrated an “understanding”
of thermostability, despite not being explicitly trained on this
attribute.

In conclusion, Ab-Affinity represents a significant ad-
vancement in the prediction of antibody binding affinities,
demonstrating both high accuracy and versatility in its ap-
plications. Our findings highlight its potential as a powerful
tool for antibody design and further exploration of protein-
antibody interactions.

The model is readily available for use and can be eas-
ily installed on any machine via PyPi. For convenience,
users can access and install Ab-Affinity directly from the
Python Package Index (PyPi) using the following link:
https://pypi.org/project/AbAffinity/. This ensures seamless
integration into various research environments and work-
flows.
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Öztürk, H.; Özgür, A.; and Ozkirimli, E. 2018. Deepdta:
deep drug–target binding affinity prediction. Bioinformatics
34(17):i821–i829.
Rao, R. M.; Meier, J.; Sercu, T.; Ovchinnikov, S.; and Rives,
A. 2020. Transformer protein language models are unsuper-
vised structure learners. bioRxiv.
Rosace, A.; Bennett, A.; Oeller, M.; Mortensen, M. M.;
Sakhnini, L.; Lorenzen, N.; Poulsen, C.; and Sormanni, P.
2023. Automated optimisation of solubility and conforma-
tional stability of antibodies and proteins. Nature communi-
cations 14(1):1937.
Shen, J.; Tenenholtz, N.; Hall, J. B.; Alvarez-Melis, D.; and
Fusi, N. 2024. Tag-llm: Repurposing general-purpose llms
for specialized domains. arXiv preprint arXiv:2402.05140.
Singh, R.; Im, C.; Qiu, Y.; Mackness, B.; Gupta, A.; Soren-
son, T.; Sledzieski, S.; Erlach, L.; Wendt, M.; Nanfack, Y. F.;



et al. 2023. Learning the language of antibody hypervariabil-
ity. bioRxiv 2023–04.
Uversky, V. N., and Van Regenmortel, M. H. 2021. Mo-
bility and disorder in antibody and antigen binding sites do
not prevent immunochemical recognition. Critical Reviews
in Biochemistry and Molecular Biology 56(2):149–156.
Van der Maaten, L., and Hinton, G. 2008. Visualizing data
using t-sne. Journal of machine learning research 9(11).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. Advances in neural information processing
systems 30.
Yuan, Y.; Chen, Q.; Mao, J.; Li, G.; and Pan, X. 2023. Dg-
affinity: predicting antigen–antibody affinity with language
models from sequences. BMC bioinformatics 24(1):430.


