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Abstract

Accurately predicting protein melting temperatures (∆Tm) is
fundamental for assessing protein stability and guiding pro-
tein engineering. Leveraging multimodal protein representa-
tions has shown great promise in capturing the complex re-
lationships among protein sequences, structures, and func-
tions. In this study, we develop models based on powerful
protein language models—including ESM2, ESM3, SaProt,
and AlphaFold—using various feature extraction methods to
enhance prediction accuracy. By utilizing the ESM3 model,
we achieve a new state-of-the-art performance on the s571
test dataset, obtaining a Pearson correlation coefficient (PCC)
of 0.50. Furthermore, we conduct a fair evaluation to compare
the performance of different protein language models in the
∆Tm prediction task. Our results demonstrate the strength of
integrating multimodal protein representations could advance
the prediction of protein melting temperatures.

Introduction
Proteins play a pivotal role in various biological applica-
tions, such as catalyzing biochemical reactions, immune
function, and metabolism regulation. Composed of se-
quences built from 20 different classes of amino acids, pro-
teins fold into complex structures—both sequence and struc-
ture determine their functions (Whisstock and Lesk 2003).
Therefore, exploring appropriate protein representations is
crucial for related tasks. Large-scale protein language mod-
els (PLMs) have demonstrated excellent performance in pro-
tein representation capabilities (Bepler and Berger 2021; Lin
et al. 2022; Hayes et al. 2024; Su et al. 2023). The pre-
training strategies enhance the models’ ability to capture nu-
anced features and patterns in protein sequences and struc-
tures, effectively transferring to downstream tasks like un-
derstanding protein fitness (Ouyang-Zhang et al. 2024; Chen
et al. 2024) and evolutionary dynamics (Hie et al. 2024).

With stabilized structures, downstream engineering of
proteins becomes more feasible. Mutations are commonly
used in protein engineering to study and improve protein
structure and function, making the accurate quantification
of mutation effects crucial for studying the evolutionary fit-
ness of proteins (Pandurangan and Blundell 2020). Ther-
modynamic stability (Pires, Ascher, and Blundell 2014;
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Umerenkov et al. 2022; Benevenuta et al. 2021; Panduran-
gan and Blundell 2020) and enzyme kinetic parameters (Li
et al. 2022; Yu et al. 2023) are widely explored in mutation-
related tasks. Benefiting from deep mutational scanning
(DMS) databases containing protein fitness data (Fowler and
Fields 2014; Tsuboyama et al. 2023), thermodynamic stabil-
ity (∆∆G) prediction has been extensively studied, and its
performance has greatly improved. However, the prediction
of changes in melting temperature (∆Tm) has been less ex-
plored compared to ∆∆G prediction. Deep learning-based
methods are largely absent in addressing this problem (Xu,
Liu, and Gong 2023; Masso and Vaisman 2014, 2008; Pucci,
Bourgeas, and Rooman 2016), partly due to a lack of exper-
imental data and partly because the issue has not received
significant attention.

In this paper, we propose a new prediction framework,
ESM3-DTm, for ∆Tm. We fine-tune three distinct protein
language models—ESM2 (Lin et al. 2022), ESM3 (Hayes
et al. 2024), and SaProt (Su et al. 2023)—and also explore
using OpenFold (Ahdritz et al. 2024) to extract features by
incorporating different regression heads into the architec-
ture. Among these approaches, we found that using ESM3-
DTm accepting both sequence and structure to obtain em-
beddings yielded the best results, achieving state-of-the-art
(SOTA) performance with a Pearson correlation coefficient
(PCC) of 0.50, mean absolute error (MAE) of 5.21, and root
mean square error (RMSE) of 7.68. We also demonstrate the
impact of different finetuning methods on the results.

Preliminary
Problem Setup
A protein P = (a1, a2, . . . , aL) is a sequence of amino
acids, where each ai ∈ AA, and AA = A,C, . . . , Y rep-
resents the 20 standard amino acid types. Let µ = (w,m)
denote a mutation that substitutes the amino acid at position
w in P with amino acid type m ∈ AA. Our goal is to predict
the change in melting temperature ∆Tm ∈ R for the protein
P resulting from the mutation µ.

Protein large language models
Over recent years, large language models have played an
ever more significant role in protein research, providing in-
novative insights and enhanced abilities for comprehend-



ing and modifying proteins(Zhang et al. 2024). Most of
them are encoder-only models, which are built upon the en-
coder of Transformer, enables the encoding of protein se-
quences or structures into fixed-length vector representa-
tions. From this series of mainstream models, we selected
ESM2 and SaProt to further explore their representation ca-
pabilities. ESM2 is one of the largest architectures among
single sequence models and stands out for its role in struc-
ture prediction. We adopt the architecture with 640 million
parameters and 36 layers. SaProt is a bilingual protein lan-
guage model featuring structure-aware embeddings, under-
goes training on Foldseek’s 3Di structures(van Kempen et al.
2022) and amino acid sequences. We used the same settings
for SaProt as we did for ESM2. In addition to encoder-only
models, we also explored encoder-decoder models. The ad-
vantage of having a decoder is that it provides the model
with strong generative capabilities. Here, we investigated
ESM3, a newly released co-design multimodal model. We
used the publicly available version with 1.4 billion parame-
ters. Apart from these language models, AlphaFold(Jumper
et al. 2021) has shown its highly effective in predicting pro-
tein structures from sequences by leveraging evolutionary
information through multiple sequence alignments (MSA).
It can also be used for feature extraction. Therefore, we also
utilized OpenFold as a backbone for further experiments.

Data

To compare our method with existing models, we use the
training and test datasets proposed by GeoStab. The training
set, s4346, comprises 4,346 single-point mutations across
349 proteins, collected from ProThermDB (Gromiha et al.
1999, 2000, 2002; Kumar et al. 2006) and ThermoMutDB
(Xavier et al. 2021), both of which are dedicated ∆Tm

databases. The test set, s571, consists of 571 single-point
mutations across 37 proteins, also collected from the same
sources.

We observed that the baseline method lacks a train/-
validation split within the training set, which can easily
lead to overfitting. To address this issue, we used MM-
seqs2(Steinegger and Söding 2017) at 50% sequence iden-
tity and then split it into training and validation sets in an 8:2
ratio. Hyperparameter tuning was conducted using this split.
After identifying the best hyperparameters, we retrained the
model on the combined training and validation sets, align-
ing with the train-test split setting of the previous baseline
GeoStab.

The original dataset contains only sequence data. For in-
put to the OpenFold backbone, multiple sequence align-
ments (MSAs) are required; we computed these using Co-
labFold (Mirdita et al. 2022). For the ESM3 backbone with
PDB input option and for the SaProt backbone input, PDB
structures are needed. Our PDB structure dataset consists
of two parts: for proteins with available PDB IDs, we re-
trieved the corresponding structures from the Protein Data
Bank (PDB); for proteins with only UniProt IDs and for all
mutated structures, we generated PDB structures using Co-
labFold.

Algorithm 1: ESM3-DTm Model
Input: CLS token embedding for wild-type CLSw ∈ Rd ,
mutanted CLSm ∈ Rd. Mutated position token embedding
for wild-type aw ∈ Rd, mutated am ∈ Rd.
Step 1: Regression Heads

Head1 = Flatten(am ⊗ aw ∈ Rd2

)
W−−→ Rd

Head2 = LayerNorm( CLS w −CLSm)⊕LayerNorm(aw −
am) ∈ R2d

Step 2: MSE Loss Calculation

LHead1 = MSE (N1(Head1)−∆Tm)

LHead2 = MSE (N2(Head2)−∆Tm)

where N1 and N2 are linear layers connected after Head1
and Head2, respectively. MSE stands for Mean Squared
Error loss function.
Step 3: Ensemble

ŷensemble =
1

2
(N1(Head1) +N2(Head2))

Lensemble =
1

2
MSE(ŷensemble −∆Tm)

Experiments
Model Setup and Implementation Details
For each mutation µ = (w,m), where the amino acid at
position w is substituted with amino acid type m ∈ AA,
we denote Pw and Pm as the representations of the entire
wild-type and mutated protein sequences, respectively. We
use aw and am to represent the embeddings at the specific
mutated position in the wild-type and mutated proteins. We
denote clsw and clsm as the CLS token representations of
the wild-type and mutated proteins.

We treat the prediction of the mutation effect on ∆Tm as
a regression task involving two sequences: the wild-type and
the mutated protein. Our model is built upon a protein lan-
guage model backbone that accepts inputs of both wild-type
and mutated protein sequences, along with structure-related
information. In our approach, protein language models serve
as feature extractors.

Our most powerful model, ESM3-DTm, is built upon
ESM3-1.4B (Hayes et al. 2024), a multimodal protein lan-
guage model that accepts both sequence and PDB struc-
ture inputs, as illustrated in Figure 1b. We extract sequence
and structure features by applying a linear layer to the final
hidden layer outputs from ESM3. We then concatenate the
embeddings from Structcls w and Seqcls w to obtain cls w,
and similarly concatenate Structcls m and Seqcls m to obtain
clsm. We obtain aw and am in the same manner. Finally,
we feed these into a regression head and average the predic-
tions from the individual models in the ensemble. We design
various regression heads in Section to predict ∆Tm. The de-
tailed progress is explained in algorithm 1.

We also select other protein language models as feature
extractors for comparison. As shown in Figure 1a, ESM2-
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Figure 1: Model Architecture. ESM3-DTm efficiently predicts ∆Tm. We also present ESM2-DTm, Saprot-DTm, and Openfold-
DTm here. “I4A” means mutation from I to A at position 4.

650M (Lin et al. 2022) and SaProt-650M (Su et al. 2023)
have architectures similar to ESM3-1.4B but accept only
sequence inputs. Notably, SaProt relies on Foldseek (van
Kempen et al. 2022) to obtain structure-aware sequences
as input, so we need an additional process when building
Saprot-DTm. OpenFold (Ahdritz et al. 2024) is another fea-
ture extractor we employ. We extract sequence features Pw

and Pm from the Evoformer and Structure Module, and also
the embeddings at the specific mutated positions, aw and
am. These features are then pass through a linear layer.

We train the model using the Adam optimizer(Diederik
2014) with a learning rate of 1 ∗ 10−5 and the OneCycle
scheduler for 10 epochs. Gradient clipping with a norm of
0.1 is applied to ensure stable training. For all protein lan-
guage backbone, we did not freeze the transformer backbone
and trained all model weights in an end-to-end manner. For
openfold backbone, we freeze the backbone and only train

the linear layer.

Regression Head
For ESM2 and ESM3 backbone, the feature extraction pro-
cess mainly adopted the corresponding CLS embeddings for
global information and mutated position embeddings for lo-
cal information. We adopt two supervised fine-tuning ways
to fusion the wild-type and mutated sequences:

• Outer product of aw and am.
• Linear combination of clsw and clsm concatenated with
aw and am.

For the OpenFold backbone, since it does not provide CLS
embeddings, we use the outputs of the entire sequence af-
ter the Evoformer and Structure Modules as global embed-
dings. We continue to use the embeddings at the mutated
positions for local information. Next, We also adopt two su-



pervised fine-tuning ways to fusion the wild-type and mu-
tated sequences:

• Outer product of aw and am.
• Linear combination of Pw and Pm.

For the SaProt backbone, since it also does not provide CLS
embeddings, we use the mean of the entire sequence em-
bedding as global information and mutated position embed-
dings as local information. We also adopt two supervised
fine-tuning ways to fusion the wild-type and mutated se-
quences:

• Outer product of aw and am.
• Linear combination of Pw and Pm.

Results
We evaluate different methods on in Table 1. We primarily
used the Pearson correlation coefficient (PCC), root mean
square error (RMSE), and mean absolute error (MAE) to as-
sess model performance. The PCC measures the linear cor-
relation between the predicted and true values, indicating the
model’s ability to rank mutations by their ∆Tm values. The
RMSE quantifies how closely the predicted measurements
align with the true measurements, while the MAE provides
the average absolute difference between predicted and true
values. Here we can see that ESM3-DTm surpasses Geostab
6.4% in PCC, 1.9% in MAE, and 4.4% in RMSE.

Method r(↑) MAE(↓) RMSE(↓)

Struct-based Methods
HoTMuSiC 0.33 5.70 8.41
AUTO-MUTE 0.29 5.79 8.50
GeoDTm-3D 0.47 5.31 8.03

Seq-based Methods
GeoDTm-Seq 0.46 5.55 8.11
ESM3-DTm 0.50 5.21 7.68

Table 1: Comparison with existing models on the S571
dataset. Other results are quoted from (Xu, Liu, and Gong
2023).

Furthermore, we fine-tuned models using the ESM2,
ESM3, SaProt, and OpenFold backbones with similar archi-
tectures to make a fair comparison of their representation
abilities, as presented in Table 2. The results indicate that
the multimodal ESM3 backbone achieves the highest perfor-
mance, suggesting that incorporating structural information
benefits the prediction.

Ablation Study
Here we explore the performance of different regression
heads. Using the ESM2-650M model as the backbone, we
conducted all experiments under consistent settings, includ-
ing those previously established. The results are presented
in Table 3. Based on these findings, we selected the best of
three to form our final model. Additionally, we investigated
the effects of fine-tuning versus freezing the ESM2-650M

Backbone r(↑) MAE(↓) RMSE(↓)

Seq-based Methods
ESM2-DTm 0.48 5.31 7.85
ESM3-DTm (seq only) 0.49 5.28 7.77

Multimodal Methods
ESM3-DTm 0.50 5.21 7.68
SaProt-DTm 0.46 5.51 8.00
OpenFold-DTm 0.35 5.31 8.03

Table 2: Comparison of different backbones on the S571
dataset.

backbone during prediction, as shown in Table 4. Our results
indicate that fine-tuning the backbone significantly improves
prediction performance.

Regression Heads r(↑) MAE(↓)

MUT Token concatenation 0.21 6.34
MUT Token outer product 0.41 5.69
MUT Token linear combination 0.40 5.50
CLS Token linear combination 0.33 6.01

Table 3: Comparison of different regression heads on the
ESM2 Backbone.

Fine-tuning Option r MAE RMSE

Fully fine-tune 0.48 5.31 7.85
Freezing backbone 0.46 5.50 7.89

Table 4: Comparison of finetuning strategies on ESM2 back-
bone.

We found that in the comparison of protein language
model backbones, the results of SaProt are slightly lower
than ESM2 and ESM3. Since SaProt does not have a CLS
token, we also use the same combination of aw and am
for ESM2 when comparing it with SaProt. The result is
shown in Table 5. One possible explanation for this result is
that SaProt was trained on datasets generated by AlphaFold,
whereas we used datasets generated by ColabFold. The dif-
ferences between these folding models may cause discrepan-
cies in the input PDB structures, leading to suboptimal com-
patibility with SaProt’s model. Another possible reason is
that the structure-aware tokens obtained from Foldseek may
not accurately capture the changes caused by mutations be-
cause Foldseek is primarily designed for sequence alignment
rather than for capturing structural variations, which trans-
forms the structure into only 20 tokens. For mutation predic-
tion, this level of granularity may be too coarse, resulting in
poor alignment and, consequently, causing the structure to
have a negative impact.



Backbone r MAE

ESM2 0.30 5.84
SaProt 0.15 6.25

Table 5: Linear combination of avg pooling.

Conclusion
In this work, we propose to utilize multimodal protein
language model backbone to make effective prediction on
melting temperature. Our findings demonstrate that the
multimodal model ESM3-DTm outperforms other single-
modality models. By effectively incorporating both se-
quence and structural data in fully fine-tuning strategy, we
can achieve more accurate predictions.
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