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Abstract

Functional group replacement is a pivotal approach in chem-
informatics to enable the design of novel chemical com-
pounds with tailored properties. Traditional methods for func-
tional group removal and replacement often rely on rule-
based heuristics, which can be limited in their ability to
generate diverse and novel chemical structures. Recently,
transformer-based models have shown promise in improv-
ing the accuracy and efficiency of molecular transformations,
but existing approaches typically focus on single-step mod-
eling, lacking the guarantee of structural similarity. In this
work, we seek to advance the state of the art by developing
a novel two-stage transformer model for functional group re-
moval and replacement. Unlike one-shot approaches that gen-
erate entire molecules in a single pass, our method generates
the functional group to be removed and appended sequen-
tially, ensuring strict substructure-level modifications. Us-
ing a matched molecular pairs (MMPs) dataset derived from
ChEMBL, we trained an encoder-decoder transformer model
with SMIRKS-based representations to capture transforma-
tion rules effectively. Extensive evaluations demonstrate our
method’s ability to generate chemically valid transforma-
tions, explore diverse chemical spaces, and maintain scala-
bility across varying search sizes.

Introduction
Chemical compound design is an essential task in drug
discovery, where the ability to modify molecular struc-
tures plays a critical role in improving the properties of
substances. One of the most challenging tasks in this do-
main is proposing new drug candidates while maintaining
the overall structure and properties of the compound. This
can be achieved by the replacement of functional groups
in molecules. Functional groups—specific atoms or clus-
ters of atoms that impart distinct chemical properties to a
molecule—are often targeted for modification to tune a com-
pound’s biological, chemical, or physical properties. In drug
discovery, for instance, altering functional groups can lead
to more potent or selective drugs, whereas in materials sci-
ence, modifying functional groups can affect properties like
solubility, stability, and conductivity.

Despite its importance, functional group replacement
is traditionally a labor-intensive process, often relying on
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expert chemists who manually select replacement groups
based on their experience and chemical intuition. While
rule-based methods exist, they are limited by their inabil-
ity to scale and explore large, complex chemical spaces.
The development of more scalable, data-driven methods has
been a focus in recent years, and machine learning mod-
els—particularly deep learning techniques such as trans-
formers—have shown remarkable potential in learning com-
plex molecular relationships from large datasets. These ma-
chine learning-based approaches can be broadly categorized
into two streams: (1) one-shot methods (Jin et al. 2018;
Tysinger, Rai, and Sinitskiy 2023; Tibo et al. 2024; He et al.
2022, 2021) and (2) two-stage methods (Wu et al. 2024;
Chen et al. 2021; Jin, Barzilay, and Jaakkola 2020; Wang
et al. 2024). One-shot methods aim to generate an entirely
new compound in a single pass, given an input compound.
Early work in this space largely relied on VAE-based ar-
chitectures to perform molecule-level translation, and the
constraint of functional-group change is enforced by choos-
ing input–output molecule pairs based on structural similar-
ity(Jin et al. 2018). Although VAE-based models ensured a
baseline level of similarity through their data construction,
their performance was hindered by limited scalability when
the data volume gets large. More recently, transformer-based
models have been employed to address these limitations,
leveraging their capacity to handle large training datasets ef-
fectively (Tysinger, Rai, and Sinitskiy 2023; Tibo et al. 2024;
He et al. 2022, 2021). However, despite these advancements,
one-shot methods continue to struggle with strictly enforc-
ing similarity between the generated and source molecules.
This limitation arises because these models rely solely on
training data to enforce functional group changes, lacking a
model-level guarantee for such constraints. In contrast, two-
stage methods decompose the problem into two sequential
steps: first identifying the functional group to be removed
and then proposing a new functional group to append at the
attachment point. Early implementations of two-stage meth-
ods often utilized graph-based models for these sub-tasks
(Chen et al. 2021; Jin, Barzilay, and Jaakkola 2020). Recent
advances (Wu et al. 2024; Wang et al. 2024) have incor-
porated large-scale pretrained language models (LLMs) to
suggest functional group replacements directly through In-
Context Learning (ICL)(Brown et al. 2020). However, ICL-
based methods are constrained by limited examples in the



prompt, restricting their ability to process and generate re-
placements based on a wide range of examples.

In this paper, we present a novel approach to functional
group replacement that leverages transformer models and
adopts a two-stage generation strategy. Our method involves
two sequential tasks: first, predicting which functional group
to remove from the source molecule, and second, select-
ing a new functional group to append at the specified lo-
cation. This approach, which is grounded in a data-driven,
autoregressive framework, enables a scalable and robust so-
lution for functional group replacement. By training on large
chemical datasets, our method ensures the generation of di-
verse, valid, and chemically relevant compounds. Further-
more, our model supports both user-specified transforma-
tions as well as those suggested by the model itself, offer-
ing flexibility for a wide range of applications. We demon-
strate the performance and efficacy of our approach through
a series of experiments, where we show that it can gener-
ate compounds that are both novel and chemically plausible,
contributing to a deeper understanding of functional group
modification.

Related Work
Matched Molecular Pairs
Matched molecular pair (MMP) analysis is a cheminfor-
matic methodology focusing on the systematic exploration
of chemical structure-property relationships (SAR). MMPs
are defined as pairs of compounds that differ by a lo-
calized structural change, enabling targeted insights into
how specific modifications influence molecular properties.
By abstracting transformations into structured rules, MMP
analysis facilitates the study of structure-activity relation-
ships, supporting diverse applications such as bioisostere
identification, optimization of physicochemical properties,
and prediction of biological activity. Modern computational
platforms, such as mmpdb, leverage advanced algorithms
for fragment-and-index processing, allowing researchers to
identify, catalog, and analyze MMPs from extensive datasets
with high efficiency (Dalke, Hert, and Kramer 2018; Hus-
sain and Rea 2010). The increasing availability of large
chemical datasets, coupled with advancements in data min-
ing techniques, has further cemented the role of MMP anal-
ysis in drug discovery and molecular design.

Machine Learning-based Functional Group
Replacement
Current machine learning-driven approaches can be broadly
classified into two categories: (1) one-shot methods (Jin
et al. 2018; Tysinger, Rai, and Sinitskiy 2023; Tibo et al.
2024; He et al. 2022, 2021) and (2) two-stage methods (Wu
et al. 2024; Chen et al. 2021; Jin, Barzilay, and Jaakkola
2020; Wang et al. 2024). One-shot methods aim to gen-
erate a completely new compound from an input com-
pound in a single step. Early research in this area pri-
marily relied on Variational Autoencoder (VAE)-based ar-
chitectures, which facilitated molecule-level translation by
enforcing functional group changes through the selection

of input-output molecule pairs based on structural similar-
ity (Jin et al. 2018). Recent advancements have introduced
transformer-based models to handle large training datasets
(Tysinger, Rai, and Sinitskiy 2023; Tibo et al. 2024; He et al.
2022, 2021). Two-stage methods approach the problem in
two distinct steps: first, identifying the functional group to
be removed, followed by proposing a new functional group
for attachment. Existing study include graph-based models
(Chen et al. 2021; Jin, Barzilay, and Jaakkola 2020). and
LLM-based methods (Wu et al. 2024; Wang et al. 2024;
Brown et al. 2020).

Methods
In this work, we introduce a transformer-based two-stage
generation approach for functional group replacement in
chemical compounds. Our method builds on the autoregres-
sive generation capabilities of transformer models, allow-
ing us to model the sequential nature of molecular transfor-
mations while ensuring precise control over the functional
groups being replaced.

The core idea of our approach involves generating a trans-
formation string in the SMIRKS format, which encodes both
the removal of the original functional group and the ad-
dition of the new functional group. We first leverage the
transformer model to identify the functional group to be re-
moved from the input molecule. Once this functional group
is identified, the model proceeds to generate the correspond-
ing functional group to append. This structured approach en-
sures that only the functional group level is modified, and
the overall molecular structure is maintained, which is cru-
cial for ensuring that the generated compounds are valid and
chemically meaningful.

As illustration of our method is given in Fig. 1, our
method can handle two types of replacement tasks: (1)
model-suggested replacements, where the model identifies
optimal functional group changes based on the learned pat-
terns from the data, and (2) user-specified replacements,
where the user defines the functional group to be replaced,
and the model generates the corresponding transformation.
By incorporating both of these tasks, our approach offers
flexibility for a wide range of use cases in drug discovery,
materials design, and other chemical engineering fields.

Data Collection
We collected data from the ChEMBL database (Gaulton
et al. 2012), a comprehensive resource of bioactive
molecules with drug-like properties. ChEMBL currently
contains over 2 million distinct compounds. To extract
matched molecular pairs (MMPs), we utilized MMPDB
(Dalke, Hert, and Kramer 2018), a tool that identifies molec-
ular pairs from a database based on structural similarities.
MMPDB works by detecting a core structure shared be-
tween molecules and defining transformations at the R-
groups. The parameters were configured as follows: the
number of heavy atoms in the core was set to ≤ 50, the
number of heavy atoms in the R-group to ≤ 13, and the ra-
tio of heavy atoms in the R-group to the total molecule to <
0.33. By running MMPDB on ChEMBL, we got 465 million
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Figure 1: An illustration of our method, including two use cases: 1) replacing model-suggested substructure and 2) replacing
user-specified substructure.

MMPs. We further filtered the data by constraining that each
molecule has at most 10 transformations to prevent highly
popular molecules from dominating the training dataset. Ad-
ditionally, each transformation string was limited to appear
no more than 10 times. Eventually, we randomly sampled
2 million MMPs from the data filtered with the above pro-
cesses as our training data.

For our model, we used the source molecule as the input
and the corresponding transformation string as the label. An
example of input-output pair of our training data is as fol-
lows: for a molecule
0=C(C=Cc1ccc(0)cc1)C=Cc1ccc(0)c(0)c1

a possible transformation string could be
[*:1]c1ccc(0)c(0)c1>>[*:1]c1ccc(0)cc1

(dehydroxylation transformation in SMIRKS format).

Modeling
We employ the encoder-decoder transformer architecture
(Raffel et al. 2020) as our base model architecture. Encoder-

decoder models are particularly advantageous for this task
as they allow explicit modeling of input-output pairs, en-
abling the model to effectively capture the complex rela-
tionships between molecular structures and their transforma-
tion processes. Unlike decoder-only models optimized for
autoregressive tasks, encoder-decoder models process the
entire input sequence to generate a detailed representation,
enabling accurate molecular transformation learning. This
allows encoder-decoder architectures to be better for fine-
tuning on specific tasks (Fu et al. 2023).

Inference
As illustrated in Fig. 1, after training, the model supports two
approaches for performing inference: 1) Replacing user-
specified substructures, where the user defines the tar-
get substructure to be replaced. This involves providing the
model with a molecule to be modified directly as input, al-
lowing it to predict transformations autonomously. 2) Re-
placing model-suggested substructures, where the model
identifies optimal replacements based on its learned patterns.



This involves passing the model with a molecule as input
to the encoder and a functional group representation (e.g.,
[O:1]) as input to the decoder. This decoder input forces
the model to generate a SMIRKS transformation string that
begins with the specified pattern, ensuring the user-defined
functional group is replaced in the generated transformation.
Our method leverages the transformer’s probabilistic nature
during inference to generate multiple plausible replacements
using beam search.

Experiments
For our experiments, we focus on evaluating the perfor-
mance of our transformer-based two-stage functional group
replacement model against traditional methods and existing
state-of-the-art models. We set up the following three key
tasks:

Functional Group Removal: The first task involves the
model’s ability to correctly identify and predict which func-
tional group is to be removed from the input molecule. We
define the target functional group by selecting a specific
functional group from the input molecule and removing it.
The model is then tasked with predicting this removal accu-
rately. Functional Group Replacement: In the second task,
once the functional group is removed, the model predicts
an appropriate replacement functional group from a prede-
fined set of candidates. These candidates include commonly
used groups such as hydroxyl, amine, carbonyl, and halo-
gens, among others. The replacement functional group must
be added to the molecule at the same location from which
the previous group was removed, ensuring that the output
remains chemically valid. Overall Transformation: The fi-
nal task evaluates the model’s ability to perform both re-
moval and replacement in a single, end-to-end transforma-
tion. This task tests the model’s overall ability to generate
valid molecules with the specified modifications. Each task
is evaluated based on several key metrics, including chemi-
cal validity, transformation accuracy, and molecular novelty.
Chemical validity is assessed using a cheminformatics tool
that checks for syntactical correctness in SMILES repre-
sentation. Transformation accuracy measures how well the
model performs the intended removal and replacement of
functional groups. Molecular novelty is calculated by com-
paring the generated molecules to the training set to ensure
that the model is not simply memorizing the data.

Implementation Details
Model Architecture To leverage a model backbone with
a pre-existing understanding of molecular languages, we
leverage the ChemT5 model (Christofidellis et al. 2023),
an encoder-decoder transformer pretrained on chemical
datasets, as our base model. ChemT5 contains approxi-
mately 220 million parameters and has been fine-tuned for
tasks in cheminformatics. It consists of 12 layers, 12 atten-
tion heads, 220M parameters, and processes input sequences
up to 512 tokens (Christofidellis et al. 2023).

Training and Inference We employed standard super-
vised training to fine-tune all parameters of the base model.
Teacher forcing (Williams and Zipser 1989) is incorporated

to improve training stability. The training was conducted
with a batch size of 64 on each device, and a learning rate
of 5e-4. We use an early stop strategy with a tolerance of 2
epochs based on the evaluation loss. Utilizing four NVIDIA
A6000 GPUs (48 GB each), the training process required
approximately 70 hours to complete. During inference, we
use a beam search size of 100 and a temperature of 0.3.

Coverage of Ground Truth Replacements
We evaluated our proposed method on the held-out test set
by generating top-k predictions (where k = 1, 10, 20, 50,
and 100) for each input molecule, using a beam search size
of 200. Two metrics were measured for each set of predic-
tions: (1) the percentage of generated SMIRKS that can be
successfully applied to the input molecule to yield a valid
product (%Valid), and (2) the percentage of generated prod-
ucts that already exist in our dataset (%exist), indicating that
they remain within a drug-like chemical space.

Table 1 compares the performance of two models
trained on the same dataset but with different output for-
mats—Mol2Mol (directly translating a source compound
into a target compound) versus our proposed approach
Mol2Trans. Overall, both models achieve high %Valid
scores across all k values, showing their ability to generate
chemically valid transformations. For instance, at k=1, both
methods produce essentially 100% valid outputs, confirming
that their top-ranked predictions rarely fail chemically.

The two models differ, however, in how many of their
generated molecules overlap with the training set. At
k=1, Mol2Mol slightly outperforms Mol2Trans in %ex-
ist (99.49% vs. 96.92%), suggesting that its top predic-
tion is more likely to reproduce known molecules. As k
increases, the gap in %Valid between the two approaches
remains small (e.g., at k=100, Mol2Mol reaches 94.97%
while Mol2Trans achieves 93.91%). Yet for %exist at k=100,
Mol2Trans (73.77%) surpasses Mol2Mol (62.44%), imply-
ing that Mol2Trans is better at sampling known, “drug-like”
molecules among its broader predictions.

These results demonstrate that (1) both models can reli-
ably generate valid chemical transformations, even when ex-
ploring a large beam search size of 200; and (2) Mol2Trans
maintains a strong balance between valid transformation and
producing compounds that remain within familiar chemical
space as k grows. In scenarios emphasizing near-perfect re-
tention within known scaffolds, Mol2Mol provides slightly
higher fidelity at very low k, whereas Mol2Trans offers a
more consistent %exist across a broader set of predictions
when a larger number of candidate outputs is desired.

Performance on Different Frequency Levels of
Source Molecules
We split our test set into multiple groups based on the num-
ber of matched molecules (k) each source molecule has in
the dataset. For instance, the group with k = 10 consists of
source molecules that each have exactly ten known matched
transformations in the dataset. This grouping reflects how
“popular” or “frequently available” each source molecule is
within the collection. To evaluate coverage, we generate can-
didate products for each source molecule in a given group,



Model Metric Search size (k)

1 10 20 50 100

Mol2Mol model %Valid 1.0000 1.0000 1.0000 0.9984 0.9497
%Exist 0.9949 0.8795 0.8272 0.7235 0.6244

Mol2Trans model %Valid 1.0000 0.9974 0.9903 0.9713 0.9391
%Exist 0.9692 0.9399 0.9045 0.8315 0.7377

Table 1: Performance comparison of Mol2Mol and Mol2Trans models.

# Target Mols Coverage Rate Avg. # Covered
1 73.33% 0.73

10 79.00% 7.9
20 71.33% 14.2
30 63.33% 19.0
40 60.33% 24.1
50 68.08% 34.0

Table 2: Coverage of MMPs in the dataset for different
values of k. Each group consists of 100 examples, where k
is the number of matched molecules known in the dataset for
each source. “Avg. # Covered” indicates the average subset
of the k matched molecules that appears in our generated
results.

then measure: Coverage Rate: The percentage of source
molecules for which at least one of the known matched prod-
ucts was reproduced among our generated results. Avg. #
Covered: The average number of known matched products
(out of k) that appear in the generation set for each source.

Table 2 summarizes the coverage metrics for each group.
With k = 1, our method covers 73.33% of known trans-
formations; intuitively, there is only one possible target
molecule to retrieve, so an average of 0.73 out of 1 is cov-
ered. As k increases, we observe different trends in cover-
age. Notably, for k = 10, the coverage rate peaks at 79.00%,
with an average of 7.9 out of 10 possible targets found in the
generated sets. For k = 20, the coverage rate is 71.33%,
indicating that while there are more potential matches, the
method still captures an average of 14.2. Interestingly, cov-
erage does not consistently decrease or increase with higher
k; for instance, k = 50 yields 68.08% coverage, which is
higher than k = 40. These results suggest that our approach
remains robust even when the number of possible matched
transformations grows, successfully recovering a substantial
fraction of known products for each source molecule.

Performance under Different Search Size
We further evaluate our model by varying the beam search
size (k) to investigate how it balances reproducing known
molecules versus exploring new chemical structures. Specif-
ically, we extract a subset of test examples where each
source molecule has exactly 50 known target molecules
within our dataset. This setup allows us to measure: Existing
(Known) Compounds in the dataset: Among the k gener-

Figure 2: The searched compounds that are existing in the
dataset (red) and unseen in the dataset (blue) under different
search sizes.

ated candidates, the number of generated that match these 50
targets. New (Novel) Compounds: Among the k candidates,
the number that are not present in our dataset (thus expand-
ing the chemical space). We experiment with a range of k
values (e.g., k ∈ {1, 5, 10, 50, 100, 200, 500, 1000}), gener-
ating that many candidate outputs for each source molecule.
By examining how the balance of existing versus novel
compounds changes with k, we gain insight into whether
our model is merely memorizing learned transformations or
truly exploring new regions of chemical space.

Figure 2 illustrates our findings. As k increases, the to-
tal number of generated products grows, naturally allow-
ing the model to retrieve more of the 50 known targets. For
small k (e.g., 1 or 5), only a few of these known molecules
are recovered, indicating that the model focuses on high-
confidence predictions. Once k surpasses 10, however, we
observe a substantial rise in recovered known compounds
(blue dots), highlighting that the learned representation is
effective at recalling multiple valid transformations from the
dataset. Concurrently, we also see an increasing number of
novel compounds (red dots) as k grows. This suggests that
the model goes beyond the strict confines of the training
data, proposing new chemical entities that may be interest-
ing starting points for further exploration. Notably, the rate
at which novel compounds appear accelerates significantly
as k becomes large, suggesting that the model’s generative
capacity extends well beyond memorized patterns. Overall,
these results demonstrate that our approach can be tuned via
the search size k to emphasize either (1) higher precision on
known transformations for smaller k, or (2) broader explo-



ration of chemical space with larger k. Striking a balance
between these two extremes is beneficial for practical appli-
cations, as it ensures both confidence in generating known
drug-like motifs and the capacity to discover new, poten-
tially innovative molecules.

Discussion
Conclusion. Our current method is the first large-scale ma-
chine learning model to ensure functional group replace-
ment by a two-stage generation paradigm. Our method
can suppose diverse functional group replacements for the
input source molecule, supporting both replacing model-
suggested functional groups and user-specified ones. Our
model can generate a large percentage (approximately 70%)
of the compounds covered in the dataset, as well as suggest-
ing diverse novel replacements unseen in the dataset by en-
larging the search sizes, while ensuring 100% of the gen-
erated compounds are only with a functional group-level
change to the source compound.

Limitations. Despite promising, our current method falls
short in the training data scale, compared to other state-of-
the-art methods. For example, (Tibo et al. 2024) leverages
200 billion compound pairs to train the transformer model,
resulting in a model with better capabilities in searching
more valid compounds in the local chemical space. Another
drawback of our current method is that it is a property-
agnostic method, which does not support property optimiza-
tion guided generation. This may limit its application in real-
world scenarios.

Future directions. Some future directions include: 1)
Larger-scale training. The maximum possible data pairs we
can attain from ChEMBL is 200 million pairs, while we
are currently using 2 million. Training with more resources
can be expected to continuously increase the model perfor-
mance. 2) Property-conditioned generation. Starting from
the current model, property-optimization generation can be
implemented via either reinforcement learning-based fine-
tuning or conditional generation-based fine-tuning. Append-
ing property control to the model can be expected to make
it more usable. 3) Different molecular representation meth-
ods. SELFIES (Self-Referencing Embedded Strings) (Krenn
et al. 2020) is a molecular representation where every gen-
erated string corresponds to a valid structure. This ensures
validity in de novo molecular design without needing post-
generation checks, simplifying chemical space exploration
and enhancing the efficiency of molecular generation algo-
rithms.
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