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Abstract

Accurate, reliable and scalable predictions of protein-ligand
binding affinity have a great potential to accelerate drug dis-
covery. Despite considerable efforts, three challenges remain:
out-of-distribution (OOD) generalizations for understudied
proteins or compounds from unlabeled protein families or
chemical scaffolds, uncertainty quantification of individual
predictions, and scalability to billions of compounds. We pro-
pose a sequence-based deep learning framework, TrustAffin-
ity, to address aforementioned challenges. TrustAffinity syn-
thesizes a structure-informed large protein language model
and a new model agnostic anomaly detection-based un-
certainty quantification method, embedding Mahalanobis
Outlier Scoring and Anomaly Identification via Clustering
(eMOSAIC). We extensively validate TrustAffinity in mul-
tiple OOD settings. TrustAffinity significantly outperforms
state-of-the-art computational methods by a large margin and
at least three orders of magnitude of faster than protein-
ligand docking, highlighting its potential in real-world drug
discovery. We further demonstrate TrustAffinity’s practicality
through an Opioid Use Disorder lead discovery case study.

Introduction
Drug discovery is very complex process, taking up to 15
years and costing billions of dollars (Hughes et al. 2011).
The advent of increased available protein structure and
chemical genomics data and ever-improving deep learning
algorithms has inspired the application of computational sci-
ence and Artificial Intelligence (AI) to drug discovery (Paul
et al. 2021; Burley et al. 2023; Liu et al. 2015), speculat-
ing its potential to accelerate discovering new therapeutics
for unmet medical needs (Mishra 2018). Screening a library
of billions of compounds against a drug target to identify
lead compounds and subsequently optimizing their binding
affinities via medicinal chemistry for drug candidates are
critical steps in a predominant target-based drug discovery
process. In the paradigm of target-based drug discovery, an
ideal drug should have a high binding affinity towards a spe-
cific target protein to ensure lower concentration usage, but
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not bind to other proteins to reduce side effects from off-
targets. Thus, accurate, reliable, and scalable prediction of
protein-ligand binding affinities across the human proteome
is a central task of computer-aided drug discovery.

Despite considerable efforts, the performance of existing
protein-ligand binding affinity prediction methods remains
poor in terms of accuracy, scalability, and reliability. The
generalization power of deep learning methods for protein-
ligand interaction predictions is weak. Current works mainly
focus on well-studied drugs and their analogs and phar-
maceutically characterized targets(Xu, Ru, and Song 2021;
Bagherian et al. 2021). Few machine learning methods can
reliably predict protein-ligand interactions between under-
studied proteins whose functions are not well characterized
and chemicals with novel scaffold. Unfortunately, the phar-
maceutical characterization of the human proteome is highly
biased (Haynes, Tomczak, and Khatri 2018; Wood et al.
2019; Stoeger et al. 2018; Oprea et al. 2018). More than
95% of human proteins do not have known small molecule
ligands (Cai et al. 2023; Gerlt et al. 2011; Carvalho-Silva
et al. 2019; Kustatscher et al. 2022). Additionally, the chem-
ical space of small organic molecules is astronomical vast.
Although the number of possible small organic molecules is
approximate 1060 (Lemonick 2020), only around 106 com-
pounds have annotated protein targets (Mendez et al. 2019;
Kim et al. 2023; Gilson et al. 2016). The scarcity of ligand
information for the majority of proteins and limited cov-
erage of chemical genomics space make it challenging to
train generalizable deep learning models for binding affinity
predictions in an out-of-distribution (OOD) scenario for un-
derstudied proteins and unexplored chemical space(Nguyen
et al. 2019; Karimi et al. 2019), in which unseen testing data
(proteins or chemicals) are significantly different from train-
ing data.

Since drug discovery is a high stake process, making de-
cisions based on incorrect predictions can lead to time and
resource wastage. Knowing the confidence level of a predic-
tion is crucial, as it allows researchers to make informed de-
cisions about whether to consider or disregard specific drug
leads. This necessitates an estimation of a reliability mea-
sure for individual predictions. The uncertainty of predic-



tion comes from either a data distribution shift or model bias
and variance. The application of uncertainty quantification
to the field of biology is relatively limited. Gaussian Process
(GP) is one of popular approach to the uncertainty quantifi-
cation. Several works (Hie, Bryson, and Berger 2020)(Qiu,
Meyerson, and Miikkulainen 2019) propose a combined GP
and multi-layer perceptron (MLP) approach for various bi-
ological tasks. However, the proposed GP+MLP algorithm
is computationally intensive and requires the modification
of the architecture of predictive models. Zeng and Gilford
(Zeng and Gifford 2019) implement an ensemble of NNs
to obtain the uncertainty associated with the predictions for
peptide-MHC binding. However, the ensemble-based tech-
nique is not as accurate as the GP algorithm for quantifying
uncertainty.

To overcome the aforementioned limitations, we propose
a new deep learning framework, TrustAffinity, which uses a
pre-trained structure-informed protein language model (Lin
et al. 2023) for exploring new chemical genomics space.
Furthermore, we develop a new uncertainty quantification
methods eMOSAIC that utilizes embedding clustering and
Mahalanobis distance for anomaly detection. Under a rig-
orous benchmark study, our proposed method significantly
outperforms state-of-the-art deep learning model for bind-
ing affinity prediction in the OOD scenario by a large mar-
gin. Interestingly, TrustAffinity also demonstrates superior-
ity over protein-ligand docking in terms of both accuracy
and scalability. We further demonstrate the applicability of
TrustAffinity to real-world drug discovery in a case study
on lead discovery for Opioid Use Disorder (OUD). Thus,
TrustAffinity represents a significant advance in deep learn-
ing applications to drug discovery.

In summary, our contributions include the following key
points:
1. We introduce TrustAffinity, a novel trustworthy deep

learning framework for accurate, reliable and scalable
binding affinity prediction in the OOD scenario.

2. Through rigorous benchmark studies, we demonstrate
the superior performance of TrustAffinity compared to
other state-of-the-art methods.

3. We apply TrustAffinity to a drug design case, and showed
that efficient sequence-based TrustAffinity significantly
outperforms structure-based protein-ligand docking.

Related Works
Protein-ligand docking (PLD) The prediction of bind-
ing affinity of a protein-ligand complex can be catego-
rized into two major approaches: structure-based methods
and structure-free methods. Structure-based methods rely on
three-dimensional (3D) information about the protein-ligand
complex to predict their binding affinity and often the under-
lying mechanism associated with their interactions. PLD is
the basis of structure-based methods and provides substan-
tial biological interpretability, as the results provide insights
into spatial configurations of protein-ligand complex and in-
formation about the various binding sites present on the pro-
tein. However, PLD is computationally expensive and re-
lies heavily on the availability of 3D structural data (Leach,

Shoichet, and Peishoff 2006). Furthermore, PLD is highly
sensitive to the conformational state of structures, which can
often lead to inaccurate predictions (Grinter and Zou 2014).

Machine learning methods for binding affinity predic-
tions In the past decade, an increasing number of machine
learning and deep learning algorithms have been incorpo-
rated into the prediction of protein-ligand interactions (PLIs)
and their binding affinity from 3D information (Jiménez
et al. 2018; Rezaei et al. 2020; Wallach, Dzamba, and
Heifets 2015; Feinberg et al. 2018). These structure-based
machine learning methods use a variety of methods to in-
corporate 3D information into their models for predicting
binding affinity. KDEEP (Jiménez et al. 2018) and DeepAtom
(Rezaei et al. 2020) represent both the protein and the ligand
as 3D voxels and use deep convolutional neural networks
(DCNNs) to account for molecular interactions within the
protein-ligand complex. AtomNet (Wallach, Dzamba, and
Heifets 2015) also uses a form of voxel representation. In-
stead of representing the entire protein, it represents only
the binding site of the target protein. PotentialNet (Fein-
berg et al. 2018) utilizes the power of graph neural net-
works (GNNs) to learn powerful representations for both
proteins and ligands for predicting binding affinity. While
these methods have demonstrated their effectiveness in the
prediction of binding affinity, they rely on extensive 3D data
and are computationally expensive.

Recent studies have demonstrated the success when us-
ing recurrent neural networks (RNNs) and long short-term
memory networks (LSTMs) to directly utilize protein se-
quences and ligand simplified molecular-input line-entry
system (SMILES) (Karimi et al. 2019; Li et al. 2022; Wang
et al. 2021; Öztürk, Özgür, and Ozkirimli 2018). DeepDTA
(Öztürk, Özgür, and Ozkirimli 2018) performs training on
label encoded SMILES and protein sequences after using 1D
CNNs to obtain the representations. DeepAffinity (Karimi
et al. 2019) follows a similar approach but instead of using
protein sequence and secondary structure as inputs. Its ar-
chitecture combines RNNs, attention mechanism, and 1D
CNNs. BACPI (Li et al. 2022) deploys the bi-directional
attention mechanism which facilitates the interaction be-
tween the ligand and protein representations, and applied
graph attention networks for learning ligand representations.
DeepDTAF (Wang et al. 2021) is similar to DeepAffinity,
it also encodes secondary structural information along with
one-hot encoded protein sequence representation based on
amino acids and utilizes the protein pocket information as
a set of features. There are two main limitations with both
the structure-based and structure-free deep learning mod-
els. Firstly, they don’t perform rigorous OOD testing, which
is the reason why they fail to perform well on real-world
unseen data. While some efforts have been made to assess
the generalizability of models. Secondly, these models lack
the capability to provide confidence estimates for their pre-
dictions. It is well-known that machine learning models are
not perfectly accurate, therefore having knowledge of con-
fidence associated with predictions in the sensitive field of
drug discovery is crucial.



Out-Of-Distribution generalization The out-of-
distribution (OOD) generalization problem arises when the
distribution of test data significantly deviates from that of
the training data. Notably, this deviation remains undis-
closed and uncharacterized during the training phase of the
model (Quinonero-Candela et al. 2008). Existing methods
in machine learning commonly assumed that both training
and testing data are independent and identically distributed
(iid) (Shen et al. 2021). This assumption does not hold in
many real-world scenarios, especially when dealing with
new PLIs in new environments. The main aim is to evaluate
how well the model would adapt and perform to these
deviations when confronted with real-world unseen data.
deep learning is susceptible to performance degradation
under these deviations. It has inspired researchers to focus
on tackling the issue of OOD generalization (Cai et al. 2023;
Hendrycks and Gimpel 2016; Liang, Li, and Srikant 2017;
Yang et al. 2022; He, Shen, and Cui 2021). PortalCG (Cai
et al. 2023) is one of few sequence-based PLI prediction
methods that address the OOD generalization problem. It
utilizes sequence pre-training, structure-based fine-tuning,
and meta-learning to improve the model performance under
an OOD setting. However, PortalCG focuses on binary
classification (binding or non-binding) of protein-ligand
pairs rather than predicting binding affinity.

Uncertainty quantification in biology The knowledge of
uncertainty is highly crucial in the safety-sensitive applica-
tions that involve human lives. Thus, uncertainty quantifi-
cation has become more common in various fields such as
computer vision (Kendall and Gal 2017; Kendall and Cipolla
2016; Kendall, Badrinarayanan, and Cipolla 2015) and nat-
ural language processing (Xiao and Wang 2019; Hu et al.
2023; Lin, Hilton, and Evans 2022). However, the applica-
tion of uncertainty quantification to the field of biology is
relatively limited. Zeng and Gilford (Zeng and Gifford 2019)
implement an ensemble of NNs to obtain the uncertainty
associated with the predictions for peptide-MHC binding
for an improved therapeutic drug design process. But, these
ensemble-based techniques aren’t as accurate as the Gaus-
sian Process (GP) algorithms for prediction of uncertainty.
GPs provide a distribution over functions, enabling them
to capture the inherent uncertainty in predictions and make
more reliable inferences. By providing this distribution, GPs
are able to capture the possible outcomes and likelihood fa-
cilitating more informed decision making process. Hie et al.
(Hie, Bryson, and Berger 2020) propose a combined GP and
multi-layer perceptron (MLP) approach for various biologi-
cal tasks, including predicting protein-kinase binding affin-
ity, generative compound design with protein kinase B activ-
ity, and protein fluorescence prediction. For binding affin-
ity prediction, they observe that GP-based models provide
accurate, low-uncertainty predictions, enhancing the selec-
tion of promising compound-kinase pairs for validation. In
generative compound design, GP-based models outperform
MLP-based models in terms of binding affinity. Along with
simply using GP, they use it alongside MLP (GP+MLP) as
proposed by Qiu et al. (Qiu, Meyerson, and Miikkulainen
2019) and notice similar or better results when compared to

the GP.

LLMs for Biology The application of Large Language
Models (LLMs) in domains like natural language processing
(NLP) and computer vision (CV) is well-established. LLMs
have significantly evolved their ability to comprehend hu-
man language and context, which has led to improved per-
formance on multiple downstream NLP tasks (Devlin et al.
2018; Brown et al. 2020). However, the exploration of their
potential and the integration of LLMs in solving complex
biological problems are only just beginning. The vast pro-
tein sequence data has motivated using LLMs, specifically
protein language models (PLMs) such as ESM-2 (Lin et al.
2023), AlphaFold (Jumper et al. 2021), and ProtTrans (El-
naggar et al. 2021). They have successfully demonstrated
their utility in predicting protein structures from their se-
quence by capturing secondary and tertiary information.
PLMs, such as DISAE (Cai et al. 2021a), built upon the
ALBERT (Lan et al. 2019) architecture, showcase that di-
rect application of LLMs from NLP may not always yield
robust performance in different domains. Therefore, includ-
ing domain knowledge through pretraining and fine-tuning
is essential in adapting LLMs. DISAE achieves SOTA per-
formance on CPI classification by including domain knowl-
edge, notably in challenging scenarios such as predicting lig-
ands for orphan proteins, which have structures significantly
dissimilar from known proteins. PortalCG (Cai et al. 2021b,
2023) is another work that incorporates domain knowl-
edge through structure-regularized pretraining to improve
the DISAE PLM protein descriptor and finally uses meta-
learning for accurate dark protein chemical interaction pre-
diction. Wu et al. (Wu et al. 2023) illustrate the integration of
PLMs with geometric neural networks for downstream tasks
such as binding affinity prediction, protein-protein interface
prediction, protein-protein rigid-body docking, and model
quality assessment. They obtained over 20% performance
improvement over the baseline method, indicating that PLM
knowledge strongly improves the capabilities of the geo-
metric neural networks. ProGen (Madani et al. 2020), an
LLM capable of generating protein sequences with specific
functions. They show that fine-tuning ProGen leads to more
controlled protein sequence generation. DG-Affinity (Yuan
et al. 2023), for predicting antigen-antibody affinity while
adapting pre-trained PLMs TAPE for antigen sequence and
Ablang for antibody sequence and utilizing it for their spe-
cific task. However, PLMs have not been applied to address
OOD protein-ligand binding affinity predictions.

Method

Our method, TrustAffinity, consists of two main modules, a
binding affinity prediction module and an uncertainty quan-
tification module eMOSAIC. They are used together to im-
prove each other’s performance. The following subsections
provide motivations and details for each of these modules in
TrustAffinity framework. Figure 1 provides an overview of
TrustAffinity.



Figure 1: Overview of TrustAffinity. TrustAffinity consists
of two main modules, binding affinity prediction module
and anomaly detection module (eMOSAIC), which work in
sync to provide the binding affinity and detect the anomalies
within the predictions.

Binding Affinity Module
The binding affinity module consists of three sub-modules
- the protein sequence module, the ligand processing mod-
ule, and lastly the PLI module. All of these modules work
together to predict the binding affinity associated with the
PLI.

Protein Sequence Module Protein sequence representa-
tion is one of the most vital components in the machine
learning frameworks for predicting not only PLIs (Karimi
et al. 2019; Li et al. 2022; Wang et al. 2021; Öztürk, Özgür,
and Ozkirimli 2018), but also their 3D structure (Jumper
et al. 2021; Lin et al. 2023). Protein sequences contain infor-
mation that can be used to infer protein structure, function,
and family (Lin et al. 2023), making them a rich source of
data for machine learning models (Jumper et al. 2021; Lin
et al. 2023). Large datasets of protein sequences are avail-
able (Jumper et al. 2021; Mitchell et al. 2020; Suzek et al.
2015), enabling machine learning frameworks to learn high-
level, general representations of proteins. We utilize ESM-
Fold (Lin et al. 2023) to obtain the protein sequence em-
beddings, which deploys a large language model (LLM) -
ESM-2 alongside a folding module and a structure module
for modeling the protein structure. The ESM-2 protein lan-
guage model, which is able to capture the protein structures
at the fine resolution of the atomic level, consists of vari-
able parameters ranging from 8M to 15B. We use the 650M
parameter model to obtain the refined protein sequence rep-
resentation. We observed that the sequence representations
obtained from the structure module of the ESMFold model
performed better than the protein embeddings obtained from
the ESM-2 model directly as well as the sequence embed-
dings obtained from the folding block, possibly because the
structure block refines the protein sequence obtained from
the ESM-2 model. We remove protein sequences greater
than 700 in length as they are very low in numbers and
due to constraints with time and memory. Since the em-
beddings obtained are variable in size corresponding to the

protein sequence length, to make them consistent for the
next steps, we perform padding to pad the sequences with
lengths less than 700, and define masks associated with the
sequences that track the padding. Since CNNs are known to
work well with processing sequence representations, we use
the ResNet model (He et al. 2016) with 5 layers, and each
layer has 4 convolutional layers to obtain a refined protein
sequence embedding. Finally, adaptive masking (using in-
terpolation) is used based on the changes to the embeddings
to avoid the loss of information.

Ligand Module We represent each ligand as a 2D graph,
where the nodes symbolize atoms and the edges are bonds.
Embeddings for both node and edge are learnt using the
graph isomorphism network (GIN) (Xu et al. 2018). For
atom or node attributes, we used atom types, hybridization
types, atom degrees, atom chirality, atom formal charges
and atom aromatic all converted to one-hot encoding be-
fore being utilized by GIN. We use a 5-layer GIN architec-
ture, which aggregates and updates node embedding for each
atom/node. To obtain a graph-level or a ligand-level embed-
ding that remains permutation invariant, a final sum pooling
operation is used.

PLI Module After obtaining both the protein and ligand
embeddings, we use the attentive pooling network such that
the model is aware of both protein and ligand and that the
interaction isn’t solely dependent on either of protein or lig-
and. This network gives us the attention weighted embed-
dings for both which are then concatenated and fed to a MLP
which predicts the final binding affinity.

Uncertainty Quantification Module
In our uncertainty quantification module, eMOSAIC, we uti-
lize embedding clustering and Mahalanobis distance to iden-
tify anomalies and quantify uncertainties. P.C. Mahalanobis
introduced the metric known as Mahalanobis Distance (MD)
in 1936 as a measure of anomaly and for detecting outliers
(Mahalanobis 2018). For a given point in a distribution, the
MD is defined as follows:

MD(x) =
√

(x− µ)Σ−1(x− µ)T (1)

Here, µ and Σ refer to the mean and variance of the dis-
tribution. It considers the variance between the various vari-
ables in a multivariate distribution since real-life data often
contains many correlated variables. Mahalanobis distance
has normalization through division by the covariance ma-
trix, ensuring that variables with different scales are suitably
handled. Because of these properties, it can effectively iden-
tify outliers or anomalies from the main distribution. Maha-
lanobis distance has previously been used in deep learning
frameworks for anomaly, OOD, and adversarial detection in
computer vision, time series, and natural language process-
ing tasks (Rippel, Mertens, and Merhof 2021; Gjorgiev and
Gievska 2020; Anthony and Kamnitsas 2023; Prekopcsák
and Lemire 2012). These instances have clearly motivated
the usage of Mahalanobis distance for anomaly detection
tasks to improve the reliability of predictions by deep learn-
ing frameworks.



After training of the binding affinity module, we extract
these attentive pooling embeddings which represent the PLI.
Now we perform k-means clustering of the PLI embed-
dings from the training set, and for each cluster we obtain
the mean (µ) and variance matrix (Σ) for Mahalanobis dis-
tance calculation. Given an embedding of a unseen PLI,
we calculate the Mahalanobis distance to each cluster. Then
we use these distances obtained as features to train a sim-
ple multi-layer perceptron (MLP) to predict the absolute
residue, which is defined as the difference between the pre-
dicted binding affinity and the true binding affinity. This way
the MLP learns to identify the PLI anomalies as predicted
by the model. For outlier detection, we select points whose
predicted residue is less than 0.5, ensuring that only high-
confidence predictions are filtered.

Training of TrustAffinity
We first train the binding affinity prediction module. Af-
ter training, we obtain the embeddings with the best model
based on the validation set, and train eMOSAIC to identify
outliers. More details about the hyperparameters and con-
figuration of the TrustAffinity Model are present in the ap-
pendix.

Experiments
Experimental Settings
Dataset: We train TrustAffinity on the ChEMBL31
database(Mendez et al. 2019), which consists of 350400 PLI
pairs. In the experiments, we split the dataset into training,
testing, and validation set by 7:2:1. Negative log transfor-
mation was performed on Ki (binding affinity) to obtain pKi
values. The data was split using the following methods - 1)
Random Split - random selection of protein-ligand pairs, 2)
Random Scaffold Split - random selection of scaffolds of
chemical structures(Ramsundar et al. 2019) such that the
chemicals in the testing set have different scaffolds from
those in the training/validation set. Scaffold split ensures
that there was no overlap of scaffold in the training, test-
ing and validation set. This was done to validate the model’s
generalization power in multiple OOD settings. Moreover,
considering the vast chemical space for drug discovery, it is
very likely that the model will encounter unknown and new
scaffolds.

Baseline models: We compare our model’s high confi-
dence, low uncertainty predictions with the current state-
of-the-art model, BACPI, which uses a novel bi-directional
attention mechanism for modeling interaction between the
protein and ligand (Li et al. 2022), on the OOD test and
validation set. BACPI (Li et al. 2022) outperforms other
state-of-the-art models DeepAffinity (Karimi et al. 2019),
DeepPurpose (Huang et al. 2020), MONN (Li et al. 2020).
Thus, we do not directly compare TrustAffinity with these
models. We also compared TrustAffinity with a typical PLD
method, AutoDock Vina (Trott and Olson 2010), on an ex-
ternal Dopamine Receptor antagonist data set (Cai et al.
2023), which contains 65 new compounds screened for there
sub-types of Dopamine Receptors including DRD1, DRD2,
and DRD3.

Evaluation: We evaluate our model performance using
root mean square (RMSE), mean absolute error (MAE),
Pearson correlation coefficient (r) and Spearman’s rank cor-
relation coefficient (ρ).

Results and Discussions
Improved OOD binding affinity prediction:

We evaluated the performance of TrustAffinity in a
scaffold-based OOD setting, where chemicals in the testing
set have different chemical scaffolds from those in the train-
ing/validation set. For the purpose of comparison, we also
evaluate TrustAffinity in the in-distribution setting of ran-
dom split.

In the OOD setting, TrustAffinity consistently outper-
forms the current state-of-the-art BACPI model regarding all
four metrics in both IID (random split) and OOD (scaffold
split) settings, as shown in Figure 2. Our model could suc-
cessfully detect the anomalies and predict the uncertainty
of predictions for improving the model performance. Al-
though BACPI has an acceptable performance in the random
split setting, its performance significantly drops in the scaf-
fold split setting. In contrast, the correlation between pre-
dicted binding affinities by TrustAffinity and actual bind-
ing affinities remains high when testing chemicals have dif-
ferent scaffold from those in the training set. These find-
ings clearly demonstrate the superior generalization power
of TrustAffinity when predicting the binding affinity in an
OOD setting. The predictions by TrustAffinity not only have
higher correlation but also have significantly lower deviation
as recorded by the RMSE (on average 20.39% lower), and
MAE (on average 25.19% lower) when compared to BACPI.

Figure 2: Performance comparison of TrustAffinity with
BACPI on test set scaffold split and random split.



Table 1: OOD DRD set results (for AutoDock Vina, the pre-
dicted docking score was multiplied by a constant which is
best suited for obtaining the final pKi value aligned with the
actual pKi values)

Method RMSE ↓ MAE ↓ r ↑ ρ ↑
AutoDock Vina 1.179 1.031 0.308 0.334

BACPI 2.523 2.181 0.103 0.122

TrustAffinity 0.919 0.739 0.617 0.614

Figure 3: Comparative residual plot of TrustAffinity vs
AutoDock Vina (PLD), and TrustAffinity vs BACPI.

Case study on lead discovery for OUD: Our method
is able to achieve considerably higher Pearson and Spear-
man correlation as compared to AutoDock Vina and BACPI
when tested on an external OOD DRD antagonist dataset, as
shown in Table 1. Figure 3 provides more detailed perfor-
mance comparisons between TrustAffinity, AutoDock Vina
as well as BACPI. In general, more PLI pairs predicted from
TrustAffinity have smaller residues (errors) than those from
AutoDock Vina and BACPI (lower corner in Figure 3). Our
method simply utilizes the protein sequence and chemical
SMILES, while AutoDock Vina utilizes the 3D structures to
obtain a docking score. Moreover, we find that TrustAffin-
ity is able to predict the binding affinity as well as the un-
certainty associated with it for a protein ligand pair in ap-
proximately 0.003 seconds, making it roughly three orders
of magnitude of faster than AutoDock Vina, which is known
to take several seconds to minutes (Huang 2018), even when
considering the best case scenario for AutoDock Vina. Thus
TrustAffinity could be a potentially powerful tool for screen-
ing novel compounds in the drug discovery pipeline due to
its high accuracy, a reliable automated component based on
the uncertainty predictions, and scalability.

Conclusion
In this work, we propose TrustAffinity, a novel framework
for accurate, reliable and scalable prediction of binding
affinity along with an estimation of the associated uncer-
tainty. We have successfully demonstrated the robust OOD
generalization capabilities of TrustAffinity, yielding reliable
(high confidence) binding affinity with high accuracy. Fur-

thermore, we highlight the framework’s notable advantage
in terms of rapid inference speed, in contrast to PLD, thereby
rendering it well-suited for deployment in automated drug
discovery processes to leverage uncertainty-based method-
ologies. However, our method has certain limitations. It is
unable to predict the binding pose of the PLI, which is also
crucial for further drug discovery pipeline. Additionally, the
performance of TrustAffinity can be further improved when
it conducts multi-task learning including the prediction of
binding poses, binding affinity and binary classification of
PLI interactions. As part of future work, we would like to
explore multi-task predictions and the incorporation of semi-
supervised techniques such as student-teacher model train-
ing for even better OOD generalization.
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statistics. Sankhyā: The Indian Journal of Statistics, Series
A (2008-), 80: S1–S7.
Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.;
De Veij, M.; Félix, E.; Magariños, M. P.; Mosquera, J. F.;
Mutowo, P.; Nowotka, M.; et al. 2019. ChEMBL: towards
direct deposition of bioassay data. Nucleic acids research,
47(D1): D930–D940.
Mishra, V. 2018. Artificial intelligence: the beginning of a
new era in pharmacy profession. Asian Journal of Pharma-
ceutics (AJP), 12(02).
Mitchell, A. L.; Almeida, A.; Beracochea, M.; Boland, M.;
Burgin, J.; Cochrane, G.; Crusoe, M. R.; Kale, V.; Potter,
S. C.; Richardson, L. J.; et al. 2020. MGnify: the micro-
biome analysis resource in 2020. Nucleic acids research,
48(D1): D570–D578.
Nguyen, T.; Le, H.; Le, T.; and Venkatesh, S. 2019. Predic-
tion of drug–target binding affinity using graph neural net-
works. BioRxiv, 684662.
Oprea, T. I.; Bologa, C. G.; Brunak, S.; Campbell, A.; Gan,
G. N.; Gaulton, A.; Gomez, S. M.; Guha, R.; Hersey, A.;
Holmes, J.; et al. 2018. Unexplored therapeutic opportuni-
ties in the human genome. Nature reviews Drug discovery,
17(5): 317–332.
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Appendix
Model Architecture & Hyperparameters

Table 2 depicts TrustAffinity’s architecture and configura-
tion in detail.

Table 2: Model Architecture Configuration

Modules Component Parameter Value

Protein
Sequence
Module

ESMFold Embedding
Dimension

[700, 384]

ResNet Layers 5
Embedding
Dimension

704

Ligand
Module GNN

Embedding
Dimension

300

Layers 5
Jump Knowl-
edge

last

Dropout 0.4
Backbone GIN

Protein
Ligand
Interaction
Module

Attentive
Pooling

Dropout 0.4
Embedding
Dimension

1004

Multi-layer
Perceptron

Layers 4

eMOSAIC
Multi-layer
Perceptron

Embedding
Dimension

50

Layers 3

Table 3 depicts the hyperparameters involved in the train-
ing of TrustAffinity.

Table 3: Model and Training Hyperparameters

Module Hyperparameter Value

Binding Affinity
Prediction
Module

Learning Rate 0.0001
Batch Size 256
Epochs 50
Loss MSE Loss
Optimizer AdamW

eMOSAIC

Learning Rate 0.0001
Batch Size 32
Epochs 10
Loss MSE
Optimizer AdamW


