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Abstract

In recent years, large language models trained on enormous
corpora of unlabeled biological sequence data have demon-
strated state-of-the-art performance on a variety of down-
stream tasks. These LLMs have been successful in modeling
both genomic and proteomic sequences and their representa-
tions have been used to outperform specialized models in a
myriad of tasks. Since the genome contains the information
to encode all proteins, genomic language models hold the po-
tential to make downstream predictions about proteins as well
as DNA. This observation motivates a model that can per-
form well on both genomic and proteomic downstream tasks.
However, since there are few tasks which pair proteins to their
true coding DNA sequences, it is difficult to compare the two
model types. In this work we curate five such datasets and use
them to evaluate the performance of multiple state-of-the-art
genomic and proteomic models. We find that, despite their
pre-training on largely non-coding sequences, genomics lan-
guage models are competitive and even outperform their pro-
tein counterparts on some tasks.

Introduction
Large language models (LLMs), thanks to their capability
to learn through self-supervision from unlabeled data, have
recently revolutionized the field of NLP (Devlin et al. 2018;
Brown et al. 2020; Raffel et al. 2020). Recently, the same
techniques have been applied to learn from biological data.
The discrete and sequential structure of biological sequences
such as proteins or DNA and RNA paired with the abun-
dance of unlabeled data, obtained through high-throughput
sequencing, makes it a perfect application field for these
methods to strive.

This effort started first in proteomics where several works
(Lin et al. 2022; Elnaggar et al. 2021) showed that training
large Transformer models to recover masked amino-acids in
protein sequences yield these models to produce powerful
representations that can then be used to solve diverse down-
stream tasks with state-of-the-art performance (Lin et al.
2023). More recently, similar models were developed for
genomics (Dalla-Torre et al. 2023; Zhou et al. 2023; Ji et al.
2021; Nguyen et al. 2023), and trained over the human refer-
ence genome as well as hundreds of reference genomes from
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different species to recover masked consecutive nucleotides
in chunks. These DNA models, while more recent and still
less mature than their protein counterparts, have also showed
the ability to build strong representations of nucleic acid se-
quences to solve downstream tasks with improved perfor-
mance. Notably, these models were mainly evaluated to be
able to predict diverse DNA molecular phenotypes such as
splice sites, regulatory elements and chromatin profiles.

Motivated by the central dogma of biology which states
that the genome encodes all protein information and by the
fact that codon usage can influence protein structure and
function (Liu 2020), a third class of models, codon-based,
was recently introduced with models such as CaLM and
CodonBERT (Outeiral and Deane 2022; Li et al. 2023).
These models were trained on large datasets made of coding
sequences (CDS) by reconstructing masked codons - instead
of masked amino-acids. These models were then showed to
outperform their amino-acid based counterparts on several
protein downstream tasks of interest.

Inspired by these recent results, we aim to study to what
extent genomics language models (gLMs) can be used as
a general unified approach to solve tasks in both worlds -
genomics and proteomics. In opposition to codon-based lan-
guage models (cLMs), genomics language models have been
trained over full raw genomes from which coding sequences
represent on average only 2% of the data. In addition, these
models have never seen ”true” CDS per se during training as
exons are always separated by introns in eukaryotic species
genomes. Therefore, it is an interesting question to what ex-
tent these models can be competitive with protein language
models (pLMs).

However, this comparison is not straightforward due to
the scarcity of labeled datasets containing both proteins and
their associated CDS. Identifying and retrieving the CDS for
a protein dataset can be a difficult, expensive and unfruit-
ful process. While prior works such as CaLM and Codon-
BERT built such tasks to evaluate their codon-based mod-
els they did not release the datasets nor the weights of the
models, hindering the reproducibility of such results. In this
paper, we study five standard protein datasets from the pro-
tein language models literature and provide the curated CDS
to enable a systematic comparison of protein and genomics
language models. We decided to focus our attention on the
ESM2 (650M parameters) and ESM1b (650M) models for



Dataset Task Type # Train Samples # Validation Samples # Test Samples Mean Sequence
Length (bp)

Fluorescence Regression 21464 5366 27217 714

Beta-Lactamase (Unique) Regression 3457 865 1080 858

Beta-Lactamase (Complete) Regression 11252 2814 1080 858

Stability Regression 53700 2512 12851 135

Melting Point Regression 9432 1064 1648 1176

Secondary Structure Prediction Per AA Classification 6224 1556 334 724

Table 1: Overview of the proposed tasks. Samples in each dataset contain protein sequences paired with nucleotide sequences.
Total sampled over all 3 test sets is provided for SSP.

proteins and the Nucleotide Transformer v2 (500M) and
DNABERT2 (117M) for genomics, as these are considered
as the state-of-the-art models in their respective fields. After
showing the importance of getting access to true CDS versus
reconstructed ones through uniform or biased sampling, we
compare these models over the five tasks. We show that ge-
nomics language models outperform their protein counter-
parts on three out of five tasks. Finally, we carry out further
analysis on one of the tasks, seeking to understand the dis-
parity of Nucleotide Transformer’s increased performance
against ESM.

Protein Downstream Tasks Datasets
We study five protein tasks of interest that are frequent in the
literature. This collection includes sequence- and residue-
level tasks, spanning regression and multi-label classifica-
tion. We detail and motivate below these five tasks. See Ta-
ble 1 for an overview of these tasks.

Secondary Structure Prediction (SSP): Understanding
the structure of proteins is integral to understanding their
function. This task tests a model’s ability to learn local sec-
ondary structure. The task is a multi-label classification task
where each input amino-acid is associated with one of 8 la-
bels, denoting which secondary structure that residue is a
part of. Following the work of Klausen (Høie et al. 2022) we
used splits filtered at 25% sequence identity to ensure gen-
eralization, and evaluated on 3 test sets: CASP12, CB513,
TS115.

Melting Point Prediction (MPP): Predicting protein
melting point can be a challenging task as even single
residue mutations can have large impacts (Pinney et al.
2021). Melting point prediction is a sequence-level regres-
sion task that evaluates a model’s ability to predict a mea-
sure of melting temperature. We follow the same “mixed”
splits described in FLIP (Dallago et al. 2021) which seek to
avoid over-emphasis of large clusters. Sequences are clus-
tered at 20% identity with 80% of clusters assigned to the
train dataset and 20% of clusters assigned to the test dataset.

Fluorescence Prediction: Estimating the fitness land-
scape of proteins which are many mutations away from the
wildtype sequence is one of the core challenges of protein
design. This task evaluates a model’s ability to predict log-
fluorescence of higher-order mutant green fluorescent pro-

tein (GFP) sequences. Original data is from an experimental
study of the GFP fitness landscape (Sarkisyan et al. 2016).
Inspired from the TAPE and PEER benchmarks (Rao et al.
2019; Xu et al. 2022), we restrict the training set to amino-
acid sequences with three or fewer mutations from parent
GFP sequences, while the test set is all sequences with four
or more mutations.

Beta-lactamase Activity Prediction: It is also important
for models to have the precision to accurately predict the ef-
fects of single amino-acid mutations (Xu et al. 2022). Beta-
Lactamase is a regression task consisting of sequences from
a study exploring the fitness landscape of all single codon
substitutions in the TEM-1 gene (Firnberg et al. 2014). La-
bels indicate the ability of mutant genes to confer ampicillin
resistance.

Protein Stability Prediction: It is important for models
trained on diverse sequences to be able to accurately pre-
dict a small region of the fitness landscape. This task evalu-
ates how well models predict stability around a small region
of high-fitness sequences. Labels indicate a peptide’s ability
to maintain structure at increasing levels of protease, which
serves as a proxy for stability.

Retrieving and Curating Coding Sequences
One main contribution of this work is to retrieve, curate, and
share consolidated CDS datasets for the five protein tasks of
interest to allow the comparison of nucleic acid- and amino-
acid-based models. We detail in this paragraph how these
CDS were collected for each task.

For MPP, we used the Uniprot(uni 2023) ID mapping tool
to map the Uniprot ID’s associated with each protein, avail-
able from the TAPE benchmark (Rao et al. 2019), to the
DNA sequence database of EMBL CDS (Kanz et al. 2005).
Any retrieved CDS from EMBL whose translation did not
match the original amino-acid sequences were filtered out.

In SSP, we used protein sequences with associated PDB
ID’s (Berman et al. 2000) from the dataset hosted by
NetsurfP-3.0 (Høie et al. 2022). To collect the CDS we
first used the RCSB 1D Coordinate Server (Berman et al.
2000) which assembles alignments between structure and
sequence databases, to find alignments to protein sequences
from the Uniprot database. Returned alignments to Uniprot
were filtered out if there was not complete coverage. The



remaining Uniprot id’s were then mapped to the sequence
database EMBL CDS using the same process as for MPP
described above.

For the beta-lactamase task, all sequences corresponded
to the same gene. We obtained the TEM-1 reference gene
as well as the mutations from supplementary material of
ref. (Rocklin et al. 2017). This original fluorescence dataset
contains many degenerate coding sequences. In PEER (Xu
et al. 2022) labels were averaged over degenerate coding se-
quences in the original dataset. This process removes much
data and does not allow us to study gLMs on degenerate
sequences. Consequently, we propose two training datasets,
sharing a single test set. The Complete set contains all CDS
samples except those that are degenerate with respect to any
CDS in the test set. The Unique set contains a random,
maximal, subset of the non-degenerate coding sequences.
This Unique set allows comparison between the gLMs and
pLMs since all translated sequences are unique, while the
Complete set demonstrates the impact of data availability on
gLM performance.

For the stability prediction task, coding sequences were
taken from supplementary material of the original experi-
mental study (Rocklin et al. 2017). Since all CDS translate
into unique amino-acids, we are able to match the dataset
splits presented in TAPE (Rao et al. 2019).

Finally, for the fluorescence task we obtained the refer-
ence GFP gene, as well as its mutations from the reference
of the original data (Sarkisyan et al. 2016). We chose to take
the Unique subset as described above since the dataset was
mostly non-degenerate.

Evaluation Methodology
The two pre-trained gLMs, DNABERT2 and NT-v2, and the
two pre-trained pLMs, ESM1b and ESM2, were respectively
evaluated with corresponding CDS and protein sequences as
input and fine-tuned in similar conditions for a fair compar-
ison. In opposition to all the other tasks that are regression
tasks at the sequence level, the SSP task is a classification
task at the amino-acid level. This is simply performed by
pLMs by predicting for each amino-acid embedding a sec-
ondary structure from the 8 possible classes. For the Nu-
cleotide Transformer, as tokens represent 6-mers, each to-
ken embedding is mapped to two classification predictions
corresponding to the two amino-acids that the 6-mer repre-
sents. As DNABert2 uses Byte Pair Encoding to tokenize
nucleotides sequences, we couldn’t retrieve any systematic
mapping from tokens to amino-acids and thus couldn’t eval-
uate this model over the SSP task.

Fine-tuning of the models was done using IA3 (Liu et al.
2022) parameter-efficient fine-tuning, along with a single-
layer classification or regression head. IA3 scales activa-
tions by a learnable vector, introducing a number of param-
eters approximately 0.1% of the total number of parame-
ters. Models were fine-tuned with a batch size of 8. Adam
optimizer was used with a learning rate of 0.003. Models
were evaluated at fixed intervals over the validation set dur-
ing training. Checkpoints with the highest R2 for regression
and lowest cross-entropy loss for classification over the val-
idation set were saved and evaluated on the test set.

Figure 1: The impact of three codon sampling strategies
on gLM performance over 5 tasks (CASP12, CB513 and
TS115 are the different test sets for the SSP task). The strate-
gies include uniformly sampling codons, permuting synony-
mous codons, and no sampling (true CDS). Performance is
measured as Spearman correlation for Fluorescence, Beta-
Lactamase, and Stability, R2 for Melting Point, and accu-
racy for SSP classification task.

Impact of Codon Usage on Genomics Models
We initiated our study by evaluating the impact of having ac-
cess to the true CDS sequence on genomics language mod-
els performance. To answer that question, we follow a pro-
cedure similar to the one presented in CaLM (Outeiral and
Deane 2022). We fine-tune the genomics language models
on all tasks, excluding SSP for DNABert2 as it couldn’t
be evaluated on that task, in three different settings: (1) on
”true” curated CDS, (2) on sequences obtained by respect-
ing codon frequencies from the true CDS but by permuting
codons and (3) on sequences obtained by uniformly sam-
pling codons. We report the obtained performance on the
test sets of each task in Figure 1.

We observe that on most tasks, having access to the ”true”
CDS improves the performance over sequences obtained by
sampling codons from their natural frequencies, thus justi-
fying the need for our curated dataset. We also observe that
randomly sampling codons yields degraded and close to zero
performance on the Beta-Lactamase prediction task. Inter-
estingly, we observe that Nucleotide Transformer v2 seems
to be more robust than DNABERT to the codon distributions
shift which might be explained by respectively the usage of
6-mers tokenization compared to BPE.

Genomic vs Protein Language Models
We compared the four aforementioned models over the five
tasks and reported the performance in Table 2. First, we ob-
serve that the Nucleotide Transformer v2 matches or outper-
forms its DNABERT2 gLM counterpart on all the protein
downstream tasks, confirming the recently published results
on genomics downstream tasks (Dalla-Torre et al. 2023). In-
terestingly, we also observe that ESM2 and ESM1b seem to
have comparable performance over these five tasks.

We observe that the Nucleotide Transformer matches the
performance of its pLMs counterparts on the fluorescence
prediction and stability prediction tasks. This suggests that
despite the distribution shift between the raw genes seen dur-
ing training by gLMs and the true CDS sequences, these



Fluorescence (ρ) Beta- Lactamase (ρ) Stability (ρ) Melting Point (R2) SSP (Acc)

Train Dataset All Complete Unique All All All

Test Dataset All All All All CASP12 CB513 TS115

Nucleotide Transformer v2 0.68 0.79 0.76 0.75 0.82 0.51 0.58 0.61
DNABERT2 0.67 0.70 0.60 0.57 0.81 N/A N/A N/A
ESM2 0.68 0.89 0.89 0.74 0.72 0.63 0.76 0.76
ESM1-b 0.68 0.88 0.88 0.75 0.72 0.61 0.73 0.72

Table 2: Evaluation results of Nucleotide Transformer v2 500M, DNABERT2, ESM2 650M, and ESM1-b 650M on the test
datasets of the proposed tasks. The metrics used to measure performance were chosen to match previous benchmarks and
include Spearman correlation ρ, R2, and accuracy, with a higher value indicating better performance for all metrics. We note,
that protein models evaluated on Complete splits see identical proteins with differing labels, however we perform the evaluation
for completeness. DNABERT2 was not evaluated on SSP since its BPE tokenization prevents residue-level predictions.

models are able to capture protein features to the same ex-
tent than protein models. However, the Nucleotide Trans-
former and DNABERT2 models underperform on the beta-
lactamase activity prediction and SSP tasks. This might sug-
gest that gLMs can capture global patterns in protein se-
quences but fail to capture finer-grain effects such as struc-
ture or the impact of single point mutations.

Finally, we observe that both the Nucleotide Transformer
and DNABERT2 models outperform significantly ESM
models on the melting point prediction tasks. We propose
detailed analysis about this result in the next paragraph.

Melting Point Prediction Task Analysis
In this section we seek to understand whether gLMs perfor-
mance on the MPP task can be attributed to a biological phe-
nomenon regarding codon usage, or whether it is exploiting
a “superficial” feature unique to CDS. Here we define su-
perficial as information readily available that does not con-
tribute to a better understanding of proteins.

Local vs Global Information. As per the impact of codon
usage study reported in Figure 1, we observed that in the
absence of codon usage information, the Nucleotide Trans-
former performance drop’s below that of ESM, suggesting
that the Nucleotide Transformer is utilizing codon frequen-
cies. One indication that the Nucleotide Transformer might
be exploiting superficial features of CDS would be if it can
achieve the similar performance using only global sequence
information. The motivation is that a biological phenomenon
regarding codon usage would likely depend on their absolute
and relative locations.

The GC-content Hypothesis. We then hypothesized that
the Nucleotide Transformer may use GC-content to in-
fluence protein melting temperature prediction. The GC-
content of a genomic sequence indicates the proportion of
guanine (G) or cytosine (C) bases. G-C base pairs, featur-
ing three hydrogen bonds, are more stable than A-T base
pairs with two hydrogen bonds. Higher GC-content leads to
higher melting temperatures in equal-length sequences. To
test this, we augment ESM2 with the sequence GC-content
information by appending the normalized GC-content to the
embeddings before making the melting point prediction. Al-
though this addition moderately improves performance with

an increase in R2 from 0.72 to 0.74, the model still lags be-
hind Nucleotide Transformer. This suggests that Nucleotide
Transformer’s predictive ability goes beyond mere adjust-
ment via GC-content.

The Species-level Conditioning Hypothesis. We then
explored if the Nucleotide Transformer may exploit codon
usage bias to condition on the species from which the
sequence was derived. The MPP dataset consists of pro-
teins from thirteen species ranging from unicellular E. coli,
to mice and humans. These species have distinct melting
point profiles and identifiable codon preferences. Codon bias
across species is a well-documented phenomenon that re-
flects mutational and selective pressures, and is evident in
the MPP dataset. To test this assumption, we augment both
ESM and the Nucleotide Transformer with the species infor-
mation of each sequence and evaluate test set performance.
We append a one-hot species-identifying vector to the em-
beddings of each model. We find that augmenting ESM with
species information increases performance from an R2 value
of 0.72 to 0.79, equal to that of NT on permuted codons. In
contrast, augmenting Nucleotide Transformer with species
only improves performance from R2 of 0.81 to 0.83. This
might suggest that Nucleotide Transformer achieves the ma-
jority of its advantage via condition on species information,
which it learned during pre-training, and the remaining per-
formance could come from local codon interactions.

Conclusion
After retrieving and curating CDS datasets for five protein
downstream tasks of interest, we evaluated two pLMs and
two gLMs over all tasks using a standardized fine-tuning
strategy. After reporting evidences that true CDS are re-
quired for gLMs to obtain good performance, we observe
that these models match and even outperform pLMs on 3
out of the 5 tasks while being strongly dominated on the 2
other tasks. This suggests that gLMs might be a good start-
ing point to build unified foundational models for biology,
but it leaves the door open to better understand how to im-
prove these models on tasks such as SSP. We hope that the
collection and release of the five CDS datasets will help the
community to keep making progress in this field.
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